Investigating the role of the ocean heat content variability in the 2016 Antarctic sea ice event

C. Pelletier H. Goosse F. Klein

ELI/TECLIM, UCLouvain (Belgium)

IGS Sea Ice Symposium Winnipeg, August 22^{nd} 2019

Recent Antarctic sea ice evolution

observations (NSIDC).

Late 20th - early 21st century up to 2016: positive trend in Antarctic sea ice extent;

Recent Antarctic sea ice evolution

Antarctic Sea ice extent seasonal anomalies from observations (NSIDC).

Only a few CMIP5 ensemble members represent positive (negative) trend in sea ice extent (surface air temperature).

- Late 20th early 21st century up to 2016: positive trend in Antarctic sea ice extent;
- Poorly caught by CMIP models (sparse observational data, ice shelf representations, high natural variability...)

Recent Antarctic sea ice evolution

Antarctic Sea ice extent seasonal anomalies from observations (NSIDC).

Only a few CMIP5 ensemble members represent positive (negative) trend in sea ice extent (surface air temperature).

- Late 20th early 21st century up to 2016: positive trend in Antarctic sea ice extent;
- Poorly caught by CMIP models (sparse observational data, ice shelf representations, high natural variability...)
- Suddent drop post-2016;

Analyzing the 2016 Antarctic sea ice events from observations

An ocean-based numerical study

Origin and impact of the 2016 anomalous ocean heat content

Observations of sea ice extent in 2016

- ▶ 2016: regular year up to winter.
- ► Below average **minimum** in February

Data: NSIDC (obs.)

Observations of sea ice extent in 2016

- ► 2016: regular year up to winter.
- Below average minimum in February
- ► Early and low maximum in August 2016
- ► Record springtime retreat in 2016

Data: NSIDC (obs.)

Sea ice velocity anomalies in 2016

Sea ice velocity norm (colormap) and direction (arrows) anomalies. Observational data taken from NSIDC-0116.

- Sea ice dynamics globally more intense than usual in 2016;
- Sustained northwards advection in the Weddell sea from the freezing season on;
- Less intense but still significant in the Ross sea.

Advective and thermodynamical trends in 2015/2016

Advection-divergence and residual sea ice concentration evolution from NSIDC-G0220 and NSIDC-0116. Method taken from Holland et al. (2011). Analyzing the 2016 Antarctic sea ice events from observations

An ocean-based numerical study

Origin and impact of the 2016 anomalous ocean heat content

Separating different contributions leading to the 2016 events

Kusahara et al. (Environ. Res. Lett., 2018)

Ensemble re-runs of 2016 aiming at separating contributions from:

- 1. Thermodynamical surface forcings (heat fluxes)
- Dynamical surface forcings (wind stress)
- 3. Oceanic conditions

2016 sea ice concentration and SST anomalies for the regular year (a), and ensemble perturbations on: (b) initial Jan. 2016 ocean conditions; (c) wind forcings; (d) thermodynamical forcings.

Separating different contributions leading to the 2016 events

Kusahara et al. (Environ. Res. Lett., 2018)

Ensemble re-runs of 2016 aiming at separating contributions from:

- 1. Thermodynamical surface forcings (heat fluxes) 53%
- Dynamical surface forcings (wind stress) 34%
- 3. Oceanic conditions 13%

2016 sea ice concentration and SST anomalies for the regular year (a), and ensemble perturbations on: (b) initial Jan. 2016 ocean conditions; (c) wind forcings; (d) thermodynamical forcings.

Separating different contributions leading to the 2016 events

Kusahara et al. (Environ. Res. Lett., 2018)

Ensemble re-runs of 2016 aiming at separating contributions from:

- Thermodynamical surface forcings (heat fluxes) 53%
- Dynamical surface forcings (wind stress) 34%
- 3. Oceanic conditions **13%**

Investigate the potentially more predictable **ocean preconditioning**'s role in the 2016 events.

2016 sea ice concentration and SST anomalies for the regular year (a), and ensemble perturbations on: (b) initial Jan. 2016 ocean conditions; (c) wind forcings; (d) thermodynamical forcings.

Configuration description

SO025: new NEMO-LIM3 configuration

- eORCA025 grid (1/4°, 75 levels) cut at $30^{\circ}S$;
- Ice shelf cavity open to ocean circulation and dynamical melt;
- ERA-Int. reanalysis as atmosphere forcings;
- ► BedMachine2 & ETOPO1 bathymetry.
- Within the context of the Belgian
 PARAMOUR project (decadal predictability in 5-component coupled models). Still under development

Configuration bathymetry and ice shelf cavities around the Antarctic continent.

Comparing spatial sea ice concentration and volume 2016 anomalies

Regular summer and autumn.

anomalies (extent in green contour).

Comparing spatial sea ice concentration and volume 2016 anomalies

SO025 simulated seasonal sea ice concentration and volume 2016 anomalies (extent in green contour). Regular summer and autumn. Winter and spring:

- Matching concentration/volume patterns in the MIZ;
- Increased melt in the vicinity of the Antarctic peninsula;
- Strong volume anomaly in the Weddell sea without noticeable concentration anomaly.

Ocean heat content anomaly spatial distribution

Ocean heat content anomaly spatial distribution

 The sea ice cover constrains heat storage in upper layers;

- No clear signal above 60m;
- 120 180m: significant heat anomaly in the Weddell sea.

Ocean heat content vertical distribution

► Shift between negative and positive surface anomaly in 2016;

 Pluri-annual, persistent ocean heat content anomaly developing below the winter MLD from 2013.

Is it model drift?

Simulated detrended ocean heat content anomaly (ref. 2000 - 2014) south of 60°S.

- Longer-term, deeper trend is not 1st-order model drift;
- Lower layer anomaly significant in terms of standard deviation;
- ▶ Uninterrupted positive bias from 2013 on at 120 180m;
- ▶ 2016: generalized heating in mean above 180m.

Is it model drift?

Simulated detrended ocean heat content anomaly (ref. 2000 - 2014) south of 60°S.

- Longer-term, deeper trend is not 1st-order model drift;
- Lower layer anomaly significant in terms of standard deviation;
- Uninterrupted positive bias from 2013 on at 120 180m;
- ▶ 2016: generalized heating in mean above 180m.

Analyzing the 2016 Antarctic sea ice events from observations

An ocean-based numerical study

Origin and impact of the 2016 anomalous ocean heat content

- Anomaly is located above the continental shelf;
- Regularly reaches MLD level from 2010 on; progressively diffused upwards, reaching the surface in 2016;
- ► Isolated by a **negative northbound anomaly**.

- Anomaly is located above the continental shelf;
- Regularly reaches MLD level from 2010 on; progressively diffused upwards, reaching the surface in 2016;
- ► Isolated by a **negative northbound anomaly**.

- Anomaly is located above the continental shelf;
- Regularly reaches MLD level from 2010 on; progressively diffused upwards, reaching the surface in 2016;
- ► Isolated by a **negative northbound anomaly**.

- Anomaly is located above the continental shelf;
- Regularly reaches MLD level from 2010 on; progressively diffused upwards, reaching the surface in 2016;
- ► Isolated by a **negative northbound anomaly**.

- Anomaly is located above the continental shelf;
- Regularly reaches MLD level from 2010 on; progressively diffused upwards, reaching the surface in 2016;
- ► Isolated by a **negative northbound anomaly**.

- Anomaly is located above the continental shelf;
- Regularly reaches MLD level from 2010 on; progressively diffused upwards, reaching the surface in 2016;
- ► Isolated by a **negative northbound anomaly**.

- Anomaly is located above the continental shelf;
- Regularly reaches MLD level from 2010 on; progressively diffused upwards, reaching the surface in 2016;
- ► Isolated by a **negative northbound anomaly**.

- Anomaly is located above the continental shelf;
- Regularly reaches MLD level from 2010 on; progressively diffused upwards, reaching the surface in 2016;
- ► Isolated by a **negative northbound anomaly**.

- Anomaly is located above the continental shelf;
- Regularly reaches MLD level from 2010 on; progressively diffused upwards, reaching the surface in 2016;
- ► Isolated by a **negative northbound anomaly**.

- Anomaly is located above the continental shelf;
- Regularly reaches MLD level from 2010 on; progressively diffused upwards, reaching the surface in 2016;
- ► Isolated by a **negative northbound anomaly**.

- Anomaly is located above the continental shelf;
- Regularly reaches MLD level from 2010 on; progressively diffused upwards, reaching the surface in 2016;
- ► Isolated by a **negative northbound anomaly**.

- Anomaly is located above the continental shelf;
- Regularly reaches MLD level from 2010 on; progressively diffused upwards, reaching the surface in 2016;
- ► Isolated by a **negative northbound anomaly**.

- Anomaly is located above the continental shelf;
- Regularly reaches MLD level from 2010 on; progressively diffused upwards, reaching the surface in 2016;
- ► Isolated by a **negative northbound anomaly**.

- Anomaly is located above the continental shelf;
- Regularly reaches MLD level from 2010 on; progressively diffused upwards, reaching the surface in 2016;
- ► Isolated by a **negative northbound anomaly**.

- Anomaly is located above the continental shelf;
- Regularly reaches MLD level from 2010 on; progressively diffused upwards, reaching the surface in 2016;
- ► Isolated by a **negative northbound anomaly**.

- Anomaly is located above the continental shelf;
- Regularly reaches MLD level from 2010 on; progressively diffused upwards, reaching the surface in 2016;
- ► Isolated by a **negative northbound anomaly**.

- Anomaly is located above the continental shelf;
- Regularly reaches MLD level from 2010 on; progressively diffused upwards, reaching the surface in 2016;
- ► Isolated by a **negative northbound anomaly**.

- Anomaly is located above the continental shelf;
- Regularly reaches MLD level from 2010 on; progressively diffused upwards, reaching the surface in 2016;
- ► Isolated by a **negative northbound anomaly**.

- Anomaly is located above the continental shelf;
- Regularly reaches MLD level from 2010 on; progressively diffused upwards, reaching the surface in 2016;
- ► Isolated by a **negative northbound anomaly**.

- Anomaly is located above the continental shelf;
- Regularly reaches MLD level from 2010 on; progressively diffused upwards, reaching the surface in 2016;
- ► Isolated by a **negative northbound anomaly**.

- Anomaly is located above the continental shelf;
- Regularly reaches MLD level from 2010 on; progressively diffused upwards, reaching the surface in 2016;
- ► Isolated by a **negative northbound anomaly**.

- Anomaly is located above the continental shelf;
- Regularly reaches MLD level from 2010 on; progressively diffused upwards, reaching the surface in 2016;
- ► Isolated by a **negative northbound anomaly**.

- Anomaly is located above the continental shelf;
- Regularly reaches MLD level from 2010 on; progressively diffused upwards, reaching the surface in 2016;
- ► Isolated by a **negative northbound anomaly**.

- Anomaly is located above the continental shelf;
- Regularly reaches MLD level from 2010 on; progressively diffused upwards, reaching the surface in 2016;
- ► Isolated by a **negative northbound anomaly**.

- Anomaly is located above the continental shelf;
- Regularly reaches MLD level from 2010 on; progressively diffused upwards, reaching the surface in 2016;
- ► Isolated by a **negative northbound anomaly**.

- Anomaly is located above the continental shelf;
- Regularly reaches MLD level from 2010 on; progressively diffused upwards, reaching the surface in 2016;
- ► Isolated by a **negative northbound anomaly**.

- Anomaly is located above the continental shelf;
- Regularly reaches MLD level from 2010 on; progressively diffused upwards, reaching the surface in 2016;
- ► Isolated by a **negative northbound anomaly**.

- Anomaly is located above the continental shelf;
- Regularly reaches MLD level from 2010 on; progressively diffused upwards, reaching the surface in 2016;
- ► Isolated by a **negative northbound anomaly**.

Boosted and damped mixing experiments

Two spin-off experiments from 2015 on: boosting or damping the turbulent mixing. $\ell_b = \ell \times 2$ or $\ell_d = \ell/2$ with ℓ turbulent kinetic energy mixing length.

Boosted and damped mixing experiments

Two spin-off experiments from 2015 on: boosting or damping the turbulent mixing. $\ell_b = \ell \times 2$ or $\ell_d = \ell/2$ with ℓ turbulent kinetic energy mixing length.

Summer:

- Temperature: increased mixing brings deeper colder water to the surface;
- Salinity: increased mixing weakens the stratification resulting from fresher melt water.

Boosted and damped mixing experiments

Two spin-off experiments from 2015 on: boosting or damping the turbulent mixing. $\ell_b = \ell \times 2$ or $\ell_d = \ell/2$ with ℓ turbulent kinetic energy mixing length.

Summer:

- Temperature: increased mixing brings deeper colder water to the surface;
- Salinity: increased mixing weakens the stratification resulting from fresher melt water.

Late-freezing season: small yet perceivable bias on surface temperature.

Perturbated mixing almost immediately yields strong & persistent below-MLD biases.

Seasonal impact of perturbated mixing on sea ice

Seasonal impact of perturbated mixing on sea ice

- ► Maximum sea ice cover: more mixing ⇒ warmer surface water during freezing months;
- Springtime retreat speed acts as a "regulator", bringing back sea ice extent to atmosphere forcing-induced minimum.

Summary and conclusions

- Anomalous winds and atmosphere heat fluxes have played a crucial role in triggering and scaling the amplitude of the 2016 events, through sea ice advection & surface melt;
- However, pluriannual mid-depth heating brought up to the surface during winter may have impacted the freezing season, leading to the low August maximum;
- Heat anomaly most probably sustained by surface anomalies progressively stored at winter mid layer depths through mixing;
- Sea ice volume diagnoses and measurements are important and could lead to seasonal predictability (e.g. Weddell sea in 2016);
- Strongest anomalies located in the Weddell sea, which harbor several large ice shelves.

2016 spatial sea ice evolution

Data: NSIDC-G02202 (obs.)

- Slight SO025 improvement compared with GLOB1
- Less spurious variability
- Better catch of the 2016 maximum
- Still too much amplitude and melt biases

- Slight SO025 improvement compared with GLOB1
- Less spurious variability
- Better catch of the 2016 maximum
- Still too much amplitude and melt biases

2016 (full lines), mean (dashed lines) and $\pm 1STD$ (shades) of the SIE on observations (NSIDC), a previous low-res (GLOB-1) and our higher-res (SO025) simulations.

- Slight SO025 improvement compared with GLOB1
- Less spurious variability
- Better catch of the 2016 maximum
- Still too much amplitude and melt biases

2016 (full lines), mean (dashed lines) and $\pm 1STD$ (shades) of the SIE on observations (NSIDC), a previous low-res (GLOB-1) and our higher-res (SO025) simulations.

- Slight SO025 improvement compared with GLOB1
- Less spurious variability
- Better catch of the 2016 maximum
- Still too much amplitude and melt biases

Ocean heat content response to perturbated turbulent mixing

2015 - 2016 ocean heat content anomaly vertical distribution south of 60°S for the reference and perturbated simulations.