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Puzzle 1: Antarctic sea ice area is

increasing (in a warming world)

Observed changes (1980-2008) in 

Antarctic sea ice concentration
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[adapted from Stroeve et al., GRL, 2014]

Sea Ice Outlook 

Predictions of September Arctic sea ice extent

Observed

Median prediction

25-75% range

million km²

Puzzle 2: Seasonal sea ice prediction

has random pattern of success

2014



6

5

4

Observed

Median prediction

25-75% range

million km²

Puzzle 2: Seasonal sea ice prediction

has random pattern of success

Atmospheric

conditions

Initial sea ice

thickness

Sea Ice Outlook 

Predictions of September Arctic sea ice extent

[adapted from Stroeve et al., GRL, 2014]

2014



Sea ice observations and 

models are complementary

Observations

Proxies for reality

No predictive skill

Incomplete coverage

Uncertainties

Models

Approximations of reality

Predictive skill

Complete coverage

Uncertainties, systematic biases



Observations

Proxies for reality

No predictive skill

Incomplete coverage

Uncertainties

Models

Approximations of reality

Predictive skill

Complete coverage

Uncertainties, systematic biases

data assimilation

Sea ice observations and 

models are complementary



1. The problem: estimation of the whole sea ice state

2. The limitations: importance of hypotheses

3. The applications: three examples in sea ice modeling

Data assimilation 

in sea ice modeling



1. The problem: estimation of the whole sea ice state

2. The limitations: importance of hypotheses

3. The applications: three examples in sea ice modeling

Data assimilation 

in sea ice modeling



NEMO v3.1/3.4

ORCA2 L31

SSS restoring

LIM2
LIM3

NCEP/NCAR 2-m temperatures, 10-m winds

Climatological precipitations, relative humidity and clouds



Just as any model, 

NEMO-LIM exhibits biases

The model physics can be improved
Rheology, ocean—sea ice interactions, snow are subject of intense research

Atmospheric reanalyses are not perfect, either
Antarctic sea ice concentration trends suspicious in the western seas

All model parameters were tuned by « trial-and-error »
Parameter space may have been underexplored



Observations alone are not sufficient

to estimate the whole sea ice state

Concentration

Thickness

Drift (large-scale)

Deformation

Snow, melt ponds

Spatial sampling Temporal sampling

~25 km, everywhere

~25 km (tracks, 

more in Arctic)

~25 km, central Arctic

very limited

~daily, 1979-2014

very limited

~daily (seasonal, 

intermittent, 2004-2014)

~10 km, central Arctic
~daily (winter,

since 1995)

~daily, 2007-2014



xa =    xf +    K (d – H xf )

Analysis Model forecast Kalman gain Observations
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xa =    xf +    K (d – H xf ).

[Evensen, 2003] 

The ensemble Kalman filter is a sequential
ensemble multivariate data assimilation method

K = P HT ( HTH P + R )

Analysis Model forecast Kalman gain Observations
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t t+1
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t+1 t+2
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1. « The forward model is linear »

 run it for short time periods (~10 days)

2. « Model and obs. errors are uncorrelated »

 difficult to check, but not impossible 

4. « The sample model error covariance matrix is a 

good proxy for model error structure » 

 certainly not the case (25 members, only

the atmosphere is perturbed)

Not all the hypotheses to reach

optimal analysis are fulfilled

3. « Model and obs. errors are centered around zero »

 certainly not the case (model has biases)



Can data assimilation provide a consistent and 

optimal estimation of the whole sea ice state?



Can data assimilation provide a consistent and 

optimal estimation of the whole sea ice state?

Even if the approximate solution is known to be

sub-optimal, can data assimilation help us out      

to estimate the whole sea ice state?



𝑧

𝑇

𝑇 𝑡

𝑇𝑏

𝑄𝑖 = −𝑘
𝜕𝑇𝑖

𝜕𝑧

𝑄𝑂𝐹(𝑡)

1 − 𝛼(𝑡) 𝑄𝑆𝑊(𝑡)

ℎ(𝑡)
𝑇𝑖(𝑡, 𝑧)

𝑄𝑜

𝜀𝜎𝑇(𝑡)4

2-variable sea ice model
[Semtner, 1976; Notz, 2005]



Model years

free run

obs analysis

truth

Model bias is not a major issue for 

estimating the observed variable



Model bias is more problematic

for initialization of predictions

Model years

obs analysis

truth





Model bias may lead to physical

instabilities in the first time steps



Statistical under-sampling may lead to weak

constraints on the non-observed variables



How are these

approximations reflected in 

the large-scale setup?



The ensemble Kalman filter is a 
multivariate data assimilation method

PSU

Analysis fresher

than forecast

Example of an update 

in sea surface salinity

Analysis saltier

than forecast



Correlation between ice concentration and thickness,

in an ensemble of 25 members

x = p-value > 5% (2-sided test)

26th March 2000 7th of September 2000

In a large-scale setup, the covariances 

are space- and time-dependent!



2. The limitations: importance of hypotheses
Not all hypotheses are fulfilled, but the approximate

solution can still be satisfactory

3. The applications: three examples in sea ice modeling

Data assimilation 

in sea ice modeling

1. The problem: estimation of the whole sea ice state
The EnKF is a sequential, ensemble, 

multivariate data assimilation method



2. The limitations: importance of hypotheses
Not all hypotheses are fulfilled, but the approximate

solution can still be satisfactory

3. The applications: three examples in sea ice modeling

Data assimilation 

in sea ice modeling

1. The problem: estimation of the whole sea ice state
The EnKF is a sequential, ensemble, 

multivariate data assimilation method



Observations of Antarctic thickness are 

too sparse to understand past variability

[Worby et al., JGR, 2008]

Distribution of 81 ship cruises

between 1981 and 2005



Antarctic sea ice thickness has lower bias
after assimilation of ice concentration
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State estimation: reconstruction 

of Antarctic sea ice thickness

cm/decade

Sea ice thickness trends (1980-2008)

p<0.05
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March ice thickness September ice concentration

Seasonal « prediction » for 2007 (atmosphere known)
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Seasonal « prediction » for 2007 (atmosphere known)



Initialized in March 

from observations of 

ice concentration

Initialization from sea ice concentration 

improves seasonal Arctic predictions

Not initialized

Error forecast September concentration

RMSE [%]
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Input



clc; clear all; close all

g=9.81; % accélération de la 

gravité

h0=0.34; % hauteur initiale du 

niveau d’eau

dt=0.1; % pas de temps

tf=30; % durée de la 

simulation

h=zeros(length(0:dt:tf),1) % h(t), à trouver

...

alpha=1.34 % Coefficient de 

% bidouillage

...

for t=1:dt:tf

[a,b,c]=compute_gain(h(t-1))

...
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x= p-value > 5% (2-sided test)

Correlation (P* , ice speed)

Parameter estimation is a state-

augmented data assimilation problem
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km/day

Sea ice drift (model, 

parameters calibrated)
Sea ice drift (observed)

 𝐹𝑎𝑖𝑟/𝑖𝑐𝑒 +  𝐹𝑜𝑐𝑒𝑎𝑛/𝑖𝑐𝑒 +  𝐹𝑖𝑐𝑒/𝑖𝑐𝑒 ≈ 0

Ca Cw P*



[Massonnet et al., JGR, 2014]

Estimating more parameters is not 

a guarantee for better solution

Distribution of Arctic sea ice speeds (fall-winter, 2007-2012)



τa + Fint = 0 (regime 1, compact ice)

τa + τw = 0 (regime 2, free drift)

(Ca) (P*)

(Ca) (Cw)

Estimating more parameters is not 

a guarantee for better solution

[budget analysis based on Steele et al., JGR, 1997]



2. The limitations: importance of hypotheses
Not all hypotheses are fulfilled, but the approximate

solution can still be satisfactory

3. The applications: three examples in sea ice modeling
Sea ice data assimilation helps understand past variability, 

improve short term predictions and calibrate model parameters

Data assimilation 

in sea ice modeling

1. The problem: estimation of the whole sea ice state
The EnKF is a sequential, ensemble, 

multivariate data assimilation method



Lessons learned

Models or observations alone are not sufficient

to address key questions in the polar regions

Even if it is suboptimal, the solution returned by the 

ensemble Kalman filter has generally an added value 

It’s never too late to start

playing with very simple models



Thank you!

francois.massonnet@uclouvain.be

www.climate.be/u/fmasson

@FMassonnet

mailto:francois.massonnet@uclouvain.be
http://www.climate.be/u/fmasson




LIM2: no ice thickness distribution



LIM3: ice thickness distribution



Ensemble spread, 
restartability and limitations

The distribution of ensemble members should reflect the full 
model uncertainty

* 25 members with perturbed atmospheric

forcing (winds/2m-air temperature)

* Localization [Sakov and Bertino, 2010]
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20th April 00

Ensemble

The tricky part: updating

the other variable
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Primitive nudging may bring the

system into a non-physical state

Ensemble Updated ensemble

20th April 00
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Ensemble Updated ensemble

20th April 00

Multivariate data assimilation 

accounts for model state covariance



The ensemble Kalman filter is a 
multivariate data assimilation method

PSU

Analysis fresher

than forecast

Example of an update in sea

surface salinity

Analysis saltier

than forecast



The ensemble Kalman filter
is a forecast-analysis method

t t+1Perturbed

winds+T2m

obs

t+1 t+2



A « sanity check » for the model is necessary
because gaussianity assumption is rarely fulfilled

> Reset negative ice concentrations/thickness to zero

> Bound total ice concentration by 1

> Ice thickness stays within category bounds

Ensemble spread, 
restartability and limitations
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Analyse

7 September 2000

Observation

(satellite)

The ensemble Kalman filter approximates the model 

error covariance matric with a finite number of particles
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Std ice concentration

3d Sept, 2000

Abs(innovation) concentration

3d Sept, 2000

Simulating the right spread in the 

marginal ice zone is challenging



Simulating the right spread in the 

marginal ice zone is challenging

Std ice concentration

22nd March 1999

Abs(innovation) concentration

22nd March 1999


