High Latitude Dynamics workshop Rosendal, 23-27 March 2015

The high resolution in seasonal climate predictions with EC-Earth

François Massonnet

C. Prodhomme, L. Batté, V. Guemas, F. J. Doblas-Reyes

Skillful **seasonal** predictions rely on « good » initial conditions and « good » models

The fraction of total variance in decadal mean surface air temperature predictions explained by the three components of total uncertainty (Adapted from *Hawkins and Sutton, BAMS, 2009*)

Where to invest computational resources is an ubiquitous question in seasonal prediction

Phil. Trans. R. Soc. A (2012) 370, 1087–1099 doi:10.1098/rsta.2011.0307

Model complexity versus ensemble size: allocating resources for climate prediction

By Christopher A. T. Ferro^{1,2,*}, Tim E. Jupp², F. Hugo Lambert², Chris Huntingford³ and Peter M. Cox² Where to invest computational resources is an ubiquitous question in seasonal prediction

Phil. Trans. R. Soc. A (2012) 370, 1087–1099 doi:10.1098/rsta.2011.0307

Model complexity versus ensemble size: allocating resources for climate prediction

By Christopher A. T. Ferro^{1,2,*}, Tim E. Jupp², F. Hugo Lambert², Chris Huntingford³ and Peter M. Cox²

PRIMAVERA H2020 project: **PR**ocess-based climate s**IM**ulation: **A**d**V**ances in highresolution modelling and **E**uropean climate **R**isk **A**ssessment

At high latitudes, what is the pure sensitivity of a GCM to increased resolution?

Low (T255/ORCA1)

Mixed (T255/ORCA025)

10 members

High (T511/ORCA025)

1993-2009: 17 seasonal experiments, initialized in May or November (4-month predictions)

2. Seasonal prediction skill

2. Seasonal prediction skill

Bias in SST prediction: very slight reductions

SST bias (°C)

Month 4 : m02j - HadISST

SST bias (°C)

Month 4 : m02r - HadISST

Month 4 : m02s - HadISST

SST bias (°C)

RMSE: 1.40°C

RMSE: 1.57°C

RMSE: 1.47°C

Bias in blocking index is reduced when both atmospheric and oceanic resolutions are increased

Blocking index is here defined as in Davini et al., 2011, J. Clim.

m02s - ERAINTERIM

2. Seasonal prediction skill

Higher oceanic AND atmospheric resolutions are necessary to increase the 2-m temperature skill in Europe

Correlation (1993-2009, detrended) of DJF 2-m temperatures of EC-Earth with ERA-Interim

Little improvements in NAO skill, but these do not clearly emerge from noise

Sampling internal variability with many members could help discern differences (e.g., Scaife et al., GRL, 2014)

Detrended correlations of simulated and observed sea ice extent

		The second second	-	
AUGUST	Arctic	0,52	0,56	0,55
	Barents	0,55	0,76	0,63
	Antarctic	0,39	0,38	0,42
	Amundsen	0,62	0,55	0,57
	Ross	0,68	0,60	0,68
	Weddell	-0,11	0,01	0,02
FEBRUARY	Arctic	0,67	0,73	0,70
	Barents	0,53	0,56	0,52
	Antarctic	0,62	0,66	0,70
	Amundsen	0,49	0,62	0,61
	Ross	0,70	0,77	0,71
	Weddell	0,53	0,54	0,59

2. Seasonal prediction skill

Does high resolution increase model uncertainty at high latitudes?

-0.45-0.30-0.150.00 0.15 0.30 0.45

2. Seasonal prediction skill

Conclusions

- First attempt to study systematically how resolution impacts seasonal prediction at high latitudes
- Resolution is not the magic button: parameterizations have to be switched off, or replaced
- High-resolution is not only about producing more fancy outputs, it's also about analyzing them (and this can take as much time)
- The effect of resolution is less clear at high latitudes than it is in the tropics (not shown in this presentation). Because natural variability is more pronounced at high-latitudes?

Thank you!

francois.massonnet@ic3.cat

www.climate.be/u/fmasson

