IC3 • Barcelona 11th December 2013

Calibration of sea ice dynamic parameters

François Massonnet

H. Goosse, T. Fichefet, F. Counillon

clc; clear all; close all	
g=9.81;	<pre>% accélération de la gravité</pre>
h0=0.34;	<pre>% hauteur initiale du niveau d'eau</pre>
dt=0.1;	<pre>% pas de temps</pre>
tf=30;	<pre>% durée de la</pre>
	simulation
h=zeros(length(0:dt:tf),1)	<pre>% h(t), à trouver</pre>
 alpha=1.34	<pre>% Coefficient de % bidouillage</pre>
<pre>for t=1:dt:tf [a,b,c]=compute_gain(h(t-1)) </pre>	

clc; clear all; close all		
g=9.81;	<pre>% accélération de la gravité</pre>	
h0=0.34;	<pre>% hauteur initiale du niveau d'eau</pre>	
dt=0.1;	<pre>% pas de temps</pre>	
tf=30;	<pre>% durée de la simulation</pre>	
h=zeros(length(0:dt:tf),1)	<pre>% h(t), à trouver</pre>	
alpha=1.34	<pre>% Coefficient de % bidouillage</pre>	
<pre>for t=1:dt:tf [a,b,c]=compute_gain(h(t-1)) </pre>		

Winter 2010 www.nasa.gov

Arctic sea ice drifts (slowly)

Arctic sea ice drifts (slowly)

Our ocean-sea ice model underestimates sea ice speed

Sea ice drift is deduced by solving Newton's law

At daily timescales, 3 forces dominate the sea ice momentum balance

At daily timescales, 3 forces dominate the sea ice momentum balance

1. Parameter estimation with the ensemble Kalman filter

2. Improved sea ice dynamics with calibrated parameters

3. Side effects and impacts on the global sea ice cover

1. Parameter estimation with the ensemble Kalman filter

2. Improved sea ice dynamics with calibrated parameters

3. Side effects and impacts on the global sea ice cover

The ensemble Kalman filter is designed to sample model uncertainty

The ensemble Kalman filter is designed to sample model uncertainty

The ensemble Kalman filter is designed to sample model uncertainty

State estimation with Ensemble Kalman Filter

[Evensen, 2003]

Parameter estimation: state is augmented

[Evensen, 2003]

Under perfect model assumptions, the original set of parameters is retrieved

Convergence in the real case, new parameter values need to be tested

1. Parameter estimation by state augmentation

2. Improved sea ice dynamics with new parameters

3. Side effects: impacts on the global sea ice cover

1. Parameter estimation by state augmentation

2. Improved sea ice dynamics with new parameters

3. Side effects: impacts on the global sea ice cover

Our ocean-sea ice model underestimates sea ice drift

Calibration of one parameter: in the right direction

Calibration of two parameters: further improvements

Calibration of three parameters: not as expected

Improved 2007-2012 distribution of Arctic sea ice speeds

Frequency [%]

Improved 2007-2012 distribution of Arctic sea ice speeds

Frequency [%]

15

Improved 2007-2012 distribution of Arctic sea ice speeds

Frequency [%]

Winter 2010 www.nasa.gov

Two dominant regimes for winter Arctic sea ice drift at daily time scales

[Steele et al., 1997]

1. Parameter estimation by state augmentation

2. Improved sea ice dynamics with new parameters

3. Side effects: impacts on the global sea ice cover

1. Parameter estimation by state augmentation

2. Improved sea ice dynamics with new parameters

3. Side effects: impacts on the global sea ice cover

Minor changes in sea ice thickness

March 2007-2012 sea ice thickness

Thick ice gets thicker, thin ice gets thinner

Slight improvement in 2009-2012 sea ice thickness distribution

Limitations in a global analysis framework

Monthly areal export of sea ice through Fram Strait

1. Parameter estimation by state augmentation

2. Improved sea ice dynamics with new parameters

3. Side effects: impacts on the global sea ice cover

The calibration scheme is extensible

Parameter calibration for GCMs / ESMs

Spatial parameter calibration

Time-dependent calibration

The calibration scheme is extensible

Parameter calibration for GCMs / ESMs

Spatial parameter calibration

Time-dependent calibration

Take home messages

Nature ignores what is a parameter

Optimal parameter values are configuration-dependent

Know your system before calibrating parameters

Calibrating too much/inappropriate parameters may lead to suboptimal solutions

Thank you

francois.massonnet@uclouvain.be

www.climate.be/u/fmasson

Winter 2010 www.nasa.gov

