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Chapter 3. Modelling the climate system 
 

3.1 Introduction 
3.1.1 What is a climate model ? 
In general terms, a climate model could be defined as a mathematical representation 

of the climate system based on physical, biological and chemical principles (Fig. 3.1). 
The equations derived from these laws are so complex that they must be solved 
numerically. As a consequence, climate models provide a solution which is discrete in 
space and time, meaning that the results obtained represent averages over regions, whose 
size depends on model resolution, and for specific times. For instance, some models 
provide only globally or zonally averaged values while others have a numerical grid 
whose spatial resolution could be less than 100 km. The time step could be between 
minutes and several years, depending on the process studied. 

Even for models with the highest resolution, the numerical grid is still much too 
coarse to represent small scale processes such as turbulence in the atmospheric and 
oceanic boundary layers, the interactions of the circulation with small scale topography 
features, thunderstorms, cloud micro-physics processes, etc. Furthermore, many 
processes are still not sufficiently well-known to include their detailed behaviour in 
models. As a consequence, parameterisations have to be designed, based on empirical 
evidence and/or on theoretical arguments, to account for the large-scale influence of these 
processes not included explicitly. Because these parameterisations reproduce only the 
first order effects and are usually not valid for all possible conditions, they are often a 
large source of considerable uncertainty in models. 

In addition to the physical, biological and chemical knowledge included in the 
model equations, climate models require some input from observations or other model 
studies. For a climate model describing nearly all the components of the system, only a 
relatively small amount of data is required: the solar irradiance, the Earth’s radius and 
period of rotation, the land topography and bathymetry of the ocean, some properties of 
rocks and soils, etc. On the other hand, for a model that only represents explicitly the 
physics of the atmosphere, the ocean and the sea ice, information in the form of boundary 
conditions should be provided for all sub-systems of the climate system not explicitly 
included in the model: the distribution of vegetation, the topography of the ice sheets, etc.  

Those model inputs are often separated into boundary conditions (which are 
generally fixed during the course of the simulation) and external forcings (such as the 
changes in solar irradiance) which drives the changes in climate. However, those 
definitions can sometimes be misleading. The forcing of one model could be a key state 
variable of another. For instance, changes in CO2 concentration could be prescribed in 
some models, but it is directly computed in models including a representation of the 
carbon cycle. Furthermore, a fixed boundary in some models, such as the topography of 
the ice sheet, can evolve interactively in a model designed to study climate variations on 
a longer time scale. 

In this framework, some data are required as input during the simulation. However, 
the importance of data is probably even greater during the development phase of the 
model, as they provide essential information on the properties of the system that is being 
modelled (see Fig. 3.1). In addition, large numbers of observations are needed to test the 
validity of the models in order to gain confidence in the conclusions derived from their 
results (see section 3.5.2). 
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Many climate models have been developed to perform climate projections, i.e. to 
simulate and understand climate changes in response to the emission of greenhouse gases 
and aerosols. In addition, models can be formidable tools to improve our knowledge of 
the most important characteristics of the climate system and of the causes of climate 
variations. Obviously, climatologists cannot perform experiments on the real climate 
system to identify the role of a particular process clearly or to test a hypothesis. However, 
this can be done in the virtual world of climate models. For highly non-linear systems, the 
design of such tests, often called sensitivity experiments, has to be very carefully 
planned. However, in simple experiments, neglecting a process or an element of the 
modelled system (for instance the influence of the increase in CO2 concentration on the 
radiative properties of the atmosphere) can often provide a first estimate of the role of this 
process or this element in the system. 

 

 

Figure 3.1: Schematic representation of the development and use of a climate 
model. 

 
3.1.2 Types of models  
Simplifications are unavoidable when designing a climate model as the processes 

that should be taken into account range from the scale of centimetres (for instance for 
atmospheric turbulence) to that of the Earth itself. The involved time scales also vary 
widely from the order of seconds for some waves, to billions of years when analysing the 
evolution of the climate since the formation of Earth. It is thus an important skill for a 
modeller to be able to select the processes that must be explicitly included compared to 
those that can be neglected or represented in a simplified way. This choice is of course 
based on the scientific goal of the study. However, it also depends on technical issues 
since the most sophisticated models require a lot of computational power: even on the 
largest computer presently available, the models cannot be routinely used for periods 
longer than a few centuries to millennia. On longer time scales, or when quite a large 
number of experiments are needed, it is thus necessary to user simpler and faster models. 
Furthermore, it is often very illuminating to deliberately design a model that includes 
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only the most important properties, so as to understand in depth the nature of a feedback 
or the complex interaction between the various components of the system. This is also the 
reason why simple models are often used to analyse the results of more complex models 
in which the fundamental characteristics of the system could be hidden by the number of 
processes represented and the details provided.  

Modellers have first to decide the variables or processes to be taken into account 
and those that will be taken as constants. This provides a method of classifying the 
models as a function of the components that are represented interactively. In the majority 
of climate studies, at least the physical behaviour of the atmosphere, ocean and sea ice 
must be represented. In addition, the terrestrial and marine carbon cycles, the dynamic 
vegetation and the ice sheet components are more and more regularly included, leading to 
what are called Earth-system models. 

 

 

Figure 3.2: Types of climate model. 

A second way of differentiating between models is related to the complexity of the 
processes that are included (Fig. 3.2). At one end of the spectrum, General Circulation 
Models (GCMs) try to account for all the important properties of the system at the highest 
affordable resolution. The term GCM was introduced because one of the first goals of 
these models is to simulate the three dimensional structure of winds and currents 
realistically. They have classically been divided into Atmospheric General Circulation 
Models (AGCMs) and Ocean General Circulation Models (OGCMs). For climate studies 
using interactive atmospheric and oceanic components, the acronyms AOGCM 
(Atmosphere Ocean General Circulation Model) and the broader CGCM (Coupled 
General Circulation Model) are generally used. 

At the other end of the spectrum, simple climate models (such as the Energy 
Balance Models, or EBMs, see section 3.2.1) propose a highly simplified version of the 
dynamic of the climate system. The variables are averaged over large regions, sometimes 
over the whole Earth, and many processes are not represented or accounted for by the 
parameterisations. EBMs thus include a relatively small number of degree of freedom.  
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EMICs (Earth Models of Intermediate Complexity) are located between those two 
extremes. They are based on a more complex representation of the system than EBMs but 
include simplifications and parameterisations for some processes that are explicitly 
accounted for in GCMs. The EMICs form the broadest category of models. Some of them 
are relatively close to simple models, while others are slightly degraded GCMs.  

When employed correctly, all the model types can produce useful information on the 
behaviour of the climate system. There is no perfect model, suitable for all purposes. This 
is why a wide range of climate models exists, forming what is called the spectrum or the 
hierarchy of models that will be described in section 3.2. Depending on the objective or 
the question, one type of models could be selected. The best type of model to use depends 
on the objective or the question. On the other hand, combining the results from various 
types of models is often the best way to gain a deep understanding of the dominant 
processes in action. 
 
3.2 A hierarchy of models 

3.2.1 Energy balance models 
As indicated by their name, energy balance models estimate the changes in the 

climate system from an analysis of the energy budget of the Earth. In their simplest form, 
they do not include any explicit spatial dimension, providing only globally averaged 
values for the computed variables. They are thus referred to as zero-dimensional EBMs. 
The basis for these EBMs was introduced by both Budyko (1969) and Sellers in (1969). 
Their fundamental equation is very similar to those analysed in sections 2.1.1 and 2.1.5:  

Changes in heat storage = absorbed solar radiation - emitted terrestrial radiation 
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where, as in Chapter 2, CE is the effective heat capacity of the media (measured in J m-2 
K-1), Ts the surface temperature, t the time, αp the planetary albedo, S0 the Total Solar 
Irradiace (TSI) and A↑ the total amount of energy that is emitted by a 1 m2 surface of the 
Earth. A↑ could be represented on the basis of the Stefan-Boltzmann law, using a factor 
τa to represent the infrared transmissivity of the atmosphere (including the greenhouse 
gas effect), as. 

εσ τ↑= 4
s aA T      (3.2) 

where ε is the emissivity of the surface. Using an albedo of 0.3, an emissivity of 0.97, and 
a value of τa of 0.64 leads to an equilibrium temperature Ts=287K, which is close to the 
observed one. In some EBMs, Eq. 3.2 is linearised to give an even simpler formulation of 
the model. On the other hand, τa and αp are often parameterised as a function of the 
temperature, in particular to take into account the fact that cooling increases the surface 
area covered by ice and snow, and thus increases the planetary albedo. 

In order to take the geographical distribution of temperature at the Earth’s surface 
into account, zero-dimensional EBMs can be extended to include one (generally the 
latitude) or two horizontal dimensions (Fig. 3.3). An additional term Δtransp is then 
included in Eq. 3.1 representing the net effect of heat input and output associated with 
horizontal transport: 
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An index i has been added to the surface temperature to indicate that the variable 
corresponds to the region i. The simplest form for the transport is to treat it as a linear 
function of temperature, but more sophisticated parameterisations are also used, 
including, for instance, a diffusion term. 

 

 

Figure 3.3: Representation of a one-dimensional EBM for which the temperature Ti 

is averaged over a band of longitude. 

Box models have clear similarities to EBMs as they represent large areas or an 
entire component of the system by an average which describes the mean over one “box”. 
The exchanges between the compartments are then parameterised as a function of the 
characteristics of the different boxes. The exact definition of the boxes depends on the 
purpose of the model. For instance, some box models have a compartment for the 
atmosphere, the land surface, the ocean surface layers and the deep ocean, possibly 
making a distinction between the two hemispheres. Others include additional components 
allowing a description of the carbon cycle and thus have boxes corresponding to the 
various reservoirs described in section 2.3. 
 

3.2.2 Intermediate complexity models 
Like EBMs, EMICs involve some simplifications, but they always include a 

representation of the Earth’s geography, i.e. they provide more than averages over the 
whole Earth or large boxes. Secondly, they include many more degrees of freedom than 
EBMs. As a consequence, the parameters of EMICs cannot easily be adjusted to 
reproduce the observed characteristics of the climate system, as can be done with some 
simpler models. 

The level of approximation involved in the development of the model varies widely 
between different EMICs. Some models use a very simple representation of the 
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geography, with a zonally averaged representation of the atmosphere and ocean. A 
distinction is always made between the Atlantic, Pacific and Indian basins (Fig. 3.4) 
because of the strong differences between them in the circulation (see section 1.3.2). As 
the atmospheric and oceanic circulations are fundamentally three-dimensional, some 
parameterisations of the meridional transport are required. Those developed for EMICs 
are generally more complex and physically based than the ones employed in one-
dimensional EBMs. 

On the other hand, some EMICs include components that are very similar to those 
developed for GCMs, although a coarser numerical grid is used so that the computations 
proceed fast enough to allow a large number of relatively long simulations to be run. 
Some other components are simplified, usually including the atmosphere because this is 
the component that is most depending on computer time in coupled climate models. 

 

 

Figure 3.4: Schematic illustration of the structure of the climate model of 
intermediate complexity MOBIDIC that includes a zonally averaged atmosphere, a 
3-basin zonal oceanic model (corresponding to the Atlantic, the Pacific and the 
Indian Oceans) and simplified ice sheets. More details about this model are 
available at http://www.astr.ucl.ac.be/index.php?page=MoBidiC%40Description. 

 
3.2.3 General circulation models 
General circulation models provide the most precise and complex description of the 

climate system. Currently, their grid resolution is typically of the order of 100 to 200 km. 
As a consequence, compared to EMICs (which have a grid resolution between 300 km 
and thousands of kilometres), they provide much more detailed information on a regional 
scale. A few years ago, GCMs only included a representation of the atmosphere, the land 
surface, sometimes the ocean circulation, and a very simplified version of the sea ice. 
Nowadays, GCMs take more and more components into account, and many new models 
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now also include sophisticated models of the sea ice, the carbon cycle, ice sheet dynamics 
and even atmospheric chemistry (Fig. 3.5). 

 

 

Figure 3.5: A simplified representation of part of the domain of a general 
circulation model, illustrating some important components and processes. For 
clarity, the curvature of the Earth has been amplified, the horizontal and vertical 
coordinates are not to scale and the number of grid points has been reduced 
compared to state-of-the-art models. 

Because of the large number of processes included and their relatively high 
resolution, GCM simulations require a large amount of computer time. For instance, an 
experiment covering one century typically takes several weeks to run on the fastest 
computers. As computing power increases, longer simulations with a higher resolution 
become affordable, providing more regional details than the previous generation of 
models. 

 
3.3 Components of a climate model 

3.3.1 Atmosphere 
The basic equations that govern the atmosphere can be formulated as a set of seven 

equations with seven unknowns: the three components of the velocity  (components u, 
v, w), the pressure p, the temperature T, the specific humidity q and the density. The 
seven equations, written for the atmosphere, are: 

v
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(1-3) Newton’s second law (momentum balance, i.e. =F ma , force equals mass times 
acceleration), 

ρ
= − ∇ − + − Ω×

1 2fric
dv p g F v
dt

    (3.4) 

In this equation, d /dt is the total derivative, including a transport term, 

∂
= + ∇

∂
.d v

dt t
     (3.5) 

g  is the apparent gravity vector (i.e. taking the centrifugal force into account), is the 

force due to friction, and Ω  is the angular velocity vector of the Earth (the last term is the 
Coriolis force) 

fricF

(4) The continuity equation or the conservation of mass 

( )ρ ρ∂
= −∇

∂
. v

t
     (3.6) 

(5) The conservation of the mass of water vapour  

ρ ρ ρ∂
= −∇ + −

∂
.( ) ( )q vq E C

t
    (3.7) 

where E and C are evaporation and condensation respectively 
(6) The first law of thermodynamics (the conservation of energy) 

ρ
= −

1
p

dT dpQ C
dt dt

     (3.8) 

where Q is heating rate per unit mass and Cp the specific heat 
(7) The equation of state 

ρ= gp R T      (3.9) 

Before these equations are used in models some standard approximations have to be 
performed. For instance, assuming hydrostatic equilibrium, which is a good 
approximation at the scale of GCMs, provides a considerable simplification of the 
equation of motion along the vertical. Secondly, the quasi-Boussinesq approximation 
states that the time variation of the density could be neglected compared to the other 
terms of the continuity equation, filtering the sound waves. However, supplementary 
equations for the liquid water content of atmospheric parcels or other variables related to 
clouds are often added to this set of equations. 

Unfortunately, these seven equations do not form a closed system. First, the 
frictional force and the heating rate must be specified. Computing the heating rate, in 
particular, requires a detailed analysis of the radiative transfer in the atmosphere, 
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accounting for both the longwave and the shortwave radiation in the atmospheric 
columns (see Fig. 3.5), as well as of the heat transfers associated with evaporation, 
condensation and sublimation. The influence of clouds in these processes is usually a 
source of considerable uncertainty. This part of the model is commonly referred to as the 
model “physics” while the calculation of the transport is called the “dynamics”. 
Secondly, as discussed in section 3.1.1, the models can only adequately resolve some of 
the processes that are included in the equations. The important processes that occur at 
scales that could not be resolved by the model grid must thus be parameterised, 
introducing new terms into the equations 3.5, 3.7 and 3.8. The boundary conditions of the 
equations describing the interactions between the atmosphere and the other components 
of the climate system also need to be specified (see section 3.3.7). 

 
3.3.2 Ocean 
The major equations that govern the ocean dynamics are based on the same 

principles as the equations for the atmosphere. The only significant difference is that the 
equation for the specific humidity is not required for the ocean, while a new equation for 
the salinity needs to be introduced. The equation of state is also fundamentally different. 
Unlike the atmosphere, there is no simple law for the ocean and the standard equation of 
state is expressed as a function of the pressure, the temperature and the salinity as a long 
polynomial series. 

It is much easier to compute the heating rate in the ocean than in the atmosphere. In 
addition to the heat exchanges at the surface, the only significant heat source in the ocean 
is the absorption of solar radiation. This is taken into account in the model through an 
exponential decay of the solar irradiance. The situation for salinity is even more 
straightforward, as there is no source or sink of salinity inside the ocean. The equations 
governing these two variables are thus relatively simple: 

= +sol diff
dT F F
dt

    (3.10) 

= diffF
dt
dS

     (3.11) 

where Fsol is the absorption of solar radiation in the ocean. Eq. 3.10 does not apply to the 
in situ temperature, but the potential temperature in order to account for the effect of 
the compressibility of seawater. The difference between those two temperatures is 
relatively low in the upper ocean, but it can reach several tenths of a degree in the deeper 
layers, an important difference in areas where the gradients are relatively small (see 
section 1.3.3.2). 

In Eqs. 3.10 and 3.11, in contrast to section 3.3.1, we have explicitly added a term 
to the right hand side representing the influence of the processes at scales that cannot be 
included in the model. As small-scale processes tend to mix properties, they are generally 
modelled as a diffusion term Fdiff. In its simplest form, a Laplacian formulation is 
retained. This is also often the formulation selected for the friction term (in Eq. 3.4). 
Because of the very different scales of ocean model grids on the vertical (a few hundred 
meters) and on the horizontal (tens to hundreds of kilometres), the small-scale processes 
in these two directions have different properties. As a consequence, the coefficients 
associated with the Laplacian (diffusion coefficient, and viscosity for tracer and 
momentum equations, respectively) differ by several orders of magnitude in the vertical 
and the horizontal. Actually, it appears that, rather than separating horizontal and vertical 
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directions, it is better to use a referential that is aligned with the density surfaces. To this 
end, isopycnal (along surfaces of equal density) and diapycnal (normal to surfaces of 
constant density) diffusion coefficients are calculated. These coefficients can be simply 
chosen, or they can be computed using sophisticated modules (including turbulence 
models) that take into account the stirring of the winds, the influence of density gradients, 
the breaking of surface and internal waves, etc. 

However, all small-scale processes cannot be represented by a diffusion term. For 
instance, dense water formed at high latitudes can flow down the slope in narrow 
boundary currents called overflows. They have a strong influence on the water mass 
properties but could not be represented on the model grid scale. In this case, a 
parameterization of their effects as a transport process rather than a diffusion term 
appears more appropriate. 

 

 

Figure 3.6: Schematic representation of some small-scale processes that 
have to be parameterized in ocean models. Modified from 
http://www.gfdl.noaa.gov/ocean-models-at-gfdl.  

 
3.3.3 Sea ice 
The physical processes governing the development of sea ice can be conceptually 

divided into two parts (Fig. 3.7). The first one covers the thermodynamic growth or decay 
of the ice, which depend on the exchanges with the atmosphere and the ocean. For those 
processes, the horizontal heat conduction through ice, can be safely neglected because he 
horizontal scale is much larger than the vertical one. The thermodynamic code of a sea-
ice model is thus basically one-dimensional over the vertical, and the conduction equation 
can be written: 

2

2
c

c pc c
Tc k
t z

ρ cT∂ ∂
∂ ∂

=     (3.12) 
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where ρc, cpc, and kc are the density, specific heat and thermal conductivity, and Tc is the 
temperature. The subscript c stands for either ice (i) or snow (s).  

The heat balance at the surface (which can be modelled similar to equation 2.36) 
allows the computation of the surface temperature and of the snow or ice melting. At the 
bottom of the sea ice, the heat balance provides an estimate of ice melting or formation, 
the temperature there being considered as equal to the freezing point temperature. 
Furthermore, the heat budget of the leads is used to determine whether new ice will form 
in the open ocean areas and if lateral melting will occur. Finally, as the ice growth and 
decay are a function of the ice thickness (the smaller the ice thickness, the faster the 
growth and decay of the ice), it is necessary to take the distribution of the ice thickness 
into account in sea-ice models. 

 

 

Figure 3.7: The main processes that have to be taken into account in a sea ice 
model. 

When studying the large-scale dynamics of sea ice, the ice is modelled as a two-
dimensional continuum. This hypothesis works if, in a model grid box, a large number of 
ice floes of different sizes and thicknesses are present as well as the leads. Newton’s 
second law then gives: 

int
i

ai wi z i
dum m f e u mg
dt

τ τ η= + − × − ∇ + F     (3.13) 

where m is the mass of snow and ice per unit area, iu is the ice velocity. aiτ and wiτ are the 

forces per unit area from the air and water. intF  is the force per unit area due to internal 
interactions and f, , g, and η are respectively the Coriolis parameter, a unit vector ze
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pointing upward, the gravitational acceleration, and the sea-surface elevation. The first 
two terms on the right hand side represent the interactions with the ocean and the 
atmosphere. The third term is the Coriolis force and the forth term the force due to the 
oceanic tilt. The internal forces intF are a function of ice thickness and concentration, 
providing a strong link between dynamics and thermodynamics, while the velocity 
obtained from equation 3.13 is used in the computation of the  transport of the model 
state variables such as the ice thickness, the concentration of each ice thickness category 
and the internal sea ice temperature and salinity. 

 
3.3.4 Land surface 
As with sea ice, horizontal heat conduction and transport in soil can be safely 

neglected. Therefore, thermodynamic processes are only computed along the vertical (in 
a similar way to Eq. 3.12). In the first generation of land surface models, only one soil 
layer was considered. As in Eq. 2.36, soil temperature can then be computed from the 
energy balance at the surface: 

( )ρ α−1 ↓ ↑

∂
= + + + + +

∂
s

p su sol SE f condIR IR

Tc h F F F F L E F
t

   (3.14) 

When a snow layer is present, the computation of the development of the snow 
depth, density and concentration is part of the surface energy balance. This is very 
important for the albedo, whose parameterisation as a function of the soil 
characteristics (snow depth, vegetation type, etc) is a crucial element of surface models. 

The latent heat flux FLE in Eq. 2.36 has been replaced in Eq. 3.14 by the latent heat 
of fusion times the evaporation rate (Lf E), as is classically done in surface models. This 
evaporation rate depends on the characteristics of the soil and the vegetation cover as 
well as on the water availability. It can be expressed with the help of the moisture 
availability function β (0<β<1), defined as the ratio between the evaporation rate of the 
surface (E) and the potential evaporation (Ep), i.e. the evaporation that would occur on a 
homogenous wet surface such as a lake: 

β=E/Ep       (3.15) 

A land surface model also simulates the water content of the soil. In the simple 
early models, this is represented by a bucket model. The bucket is allowed to fill up to a 
critical level, corresponding to the equivalent of 15 to 30 cm of water everywhere on a 
grid cell. If, after taking into account precipitation and surface evaporation, the amount of 
water in the soil exceeds this threshold, the excess water is transferred to a prescribed 
oceanic grid point through river runoff. 

The easiest way is to simply select the parameters (such as the albedo, the surface 
roughness or the moisture availability function) in Eq. 3.14 and 3.15 on the basis of 
observations of surface characteristics. However, the accurate representation of the 
energy and water exchanged between the atmosphere and the land surface requires a 
more sophisticated description of the effects of vegetation and soil. Horizontally, instead 
of a homogenous description as proposed in Eq. 3.14, the heterogeneous nature of the 
land surface, covered by different types of vegetation, bare soils, cities, etc, must be 
explicitly accounted for. Vertically, the interactions between the canopy, the soil and the 
roots also have a clear impact that cannot be adequately computed by an equation as 
simple as 3.14.  
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Figure 3.8: The main processes that have to be taken into account in a land 
surface model. For clarity, the carbon storage in plants and in soils, as well 
as the exchanges between these reservoirs and with the atmosphere are not 
shown. 

Sophisticated representations of these processes are now included in the state-of-
the-art GCMs. In particular, they include a multi-layer soil model, a comprehensive 
description of the vegetation cover and of the physical and chemical interactions between 
the plants, the soil and the atmosphere. They also have a sophisticated river-routing 
scheme which accounts for the duration of the water transport as well as evaporation 
during the journey to the ocean or the interior sea. These improvements are also essential 
in an adequate representation of the carbon cycle on land (see section 2.3.3). At present, 
the majority of climate models do not include a representation of permafrost, but this is 
likely to change because of the large modifications in the extent of permafrost that are 
expected during the 21st century. 

Some models take the community composition and vegetation structure as a 
boundary condition or forcing (if land use changes are specified for instance). They then 
use this information to determine the physical characteristics of the surface and the soil, 
as well as the carbon storage over land. However dynamic global vegetation models 
(DGVMs) explicitly compute the transient dynamics of the vegetation cover in response 
to climate changes and disturbances such as fires. DGVMs can also provide the 
distribution of biomes that are in equilibrium with climate conditions (Figure 3.9). It is of 
course impossible to represent the fraction covered by each of the hundreds of thousands 
of different plant species in DGVMs. The plants are thus grouped into plant functional 
types (PFTs) that share common characteristics. Very simple models only use two PFTs 
(trees and grass, the area not covered by trees or grass corresponding to the fraction of 
desert in a grid element), while more sophisticated models use more than ten different 
PFTs. 
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Figure 3.9: The equilibrium fraction of trees in a model that includes two plant 
functional types and whose community composition is only influenced by 
precipitation and the growing degree days (GDD) (Brovkin et al. 1997). Growing 
degree days are defined as the sum of the daily mean near-surface temperatures for 
the days of a year with a temperature higher than 0°C. Figure Courtesy of V. 
Brovkin. 

 
3.3.5 Marine biogeochemistry 
Models of biogeochemical cycles in the oceans are based on a set of equations 

whose formulation is very close to that of equations 3.10 and 3.11 for the ocean 
temperature and salinity: 

= + −bgc
diff

dTrac
F Sources Sinks

dt
    (3.16) 

where Tracbgc is a biogeochemical variable. Those variables are often called tracers 
because they are transported and diffused by the oceanic flow (the left hand side of the 
equation and the term Fdiff).  
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Tracbgc can represent DIC, Alk, the concentration of various chemical species 
(including nutriments necessary for phytoplankton growth) or the biomass of different 
groups of phytoplankton, detritus, zooplankton and (more rarely) higher trophic levels. 
Simplified carbon cycle models include a few state variables while the most sophisticated 
biogeochemical models have more than 30 of them. The Sources and Sinks terms account 
for the increase or decrease of the tracer concentration in response to biogeochemical 
processes, including thus a representation of the processes described in section 2.3. For 
instance, for a particular phytoplankton group, the Sources term could be related to the 
growth in the biomass by photosynthesis, while the Sinks are the consumption of 
phytoplankton by zooplankton as well as the mortality of the cells. In addition to the 
processes taking place in the water column, some models include a comprehensive ocean 
sediment component in order to be able to study the long-term changes in the carbon 
cycle. 
 

 

Figure 3.10: A simplified scheme representing some of the variables of a 
biogeochemical model. The interactions between the groups are complex as 
the different types of phytoplankton need different nutrients, are grazed by 
different types of zooplankton etc. 

 
3.3.6 Ice sheets 
As already discussed for the atmosphere and the sea ice, ice-sheet models can be 

decomposed into two major components: a dynamic core that computes the flow of the 
ice and a thermodynamic part that estimates the changes in ice temperatures, snow 
accumulation, melting, etc. The ice velocity can be computed using the complete three-
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dimensional equation. This is affordable for regional models, focusing on particular 
regions, but approximations are often necessary for climate models which compute the 
development of whole ice sheets on long timescales.  

The conservation of ice volume can be written as:  

∂
= −∇ +

∂
.( )m

H v H M
t b     (3.17) 

where m is the depth-averaged horizontal velocity field and Mb is the mass balance 
accounting for snow accumulation as well as basal and surface meltings. Surface melting 
can be deduced from the energy budget at the surface (similar to Eq. 2.36, see also 
section 3.3.3). Simpler formulations of surface melting are based on the positive degree-
day methods, which relates the melting to the temperature during the days with 
temperatures above 0°C. An important element in the mass balance at the surface of the 
ice sheets is the position of the equilibrium line between the regions where, on a yearly 
average, snow tends to accumulate and the ablation region (where there is net melting of 
the snow and ice when the surface mass balance is integrated over the whole year). On 
the Greenland ice sheet, in present-day conditions, ablation occurs in many areas, 
whereas on the colder Antarctic ice sheet, it is restricted to a few regions only. 

v

 

 

Figure 3.11: The main processes that have to be taken into account in an ice 
sheet model. Figure reproduced from 
http://www.solcomhouse.com/icecap.htm. 

The melting at the ice base is deduced from the balance between the heat 
conduction in the ice and in the ground, taking into account the geothermal heat flux. 
Conditions at the ice base, and in particular the presence of water or ice close to the 
melting point at the corresponding pressure, have a large impact on the ice velocity as 
they reduce the stresses greatly, compared to the situation where the ice is well below the 
freezing point. 
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Ice sheets models also need to take into account the interactions between grounded 
ice and ice shelves. Because of local melting and iceberg calving, ice shelves can make a 
large contribution to the mass balance of the ice sheets, as is currently the case for 
Antarctica. Furthermore, they generate stresses that tend to slow down the ice flow on 
land. Indeed, observations have shown that the recent breakdown of some ice shelves has 
produced, in some regions, an acceleration of the land ice.  

An additional element in ice-sheet models is the representation of interactions with 
the underlying bedrock. In particular, as the load of the ice sheet tends to depress the 
bedrock, a bedrock adjustment model is needed to compute the position of the ground as 
a function of the ice mass. This then yields the elevation of the ice sheet as a function of 
the ice thickness. 
 

3.3.7 Coupling between the components - Earth system models 
The interactions between the various components of the system play a crucial role 

in the dynamics of climate. Wind stress, heat and freshwater fluxes at the ocean surface 
are the main drivers of the ocean circulation (see section 1.3.2). The evaporation at the 
ocean surface is the largest source of water vapour for the atmosphere, which influences 
the radiative properties of the air (section 2.1.2) and the atmospheric heat transport 
(section 2.1.5). Snow falling on ice sheets is an essential element of their mass balance. 
Many other examples could be cited. 

Some of those interactions are quite straightforward to compute from the models 
state variables, while more sophisticated parameterisations are required for others. For 
instance, the parameterisation of the wind stress and of the heat flux at the atmospheric 
base (e.g., Eqs. 2.33 and 2.34) can be derived from theories of the atmospheric 
boundary layer. However, this computation still requires empirical parameters that 
depend on the characteristics of the surface, introducing some uncertainties into the 
determination of the flux. 

The technical coupling of the various components to obtain a climate- or Earth-
system model brings additional difficulties. The numerical codes have generally been 
developed independently by different groups, using different coding standards, different 
numerical grids, etc. It is thus necessary to design an interface and to use a coupler, i.e. 
code specially adapted to represent the exchanges between the various components.  

The above presentation includes the main elements of the majority of current Earth-
system models. However, the description is far from exhaustive. New components (such 
as models of the methane cycle, of the nitrogen cycle, more sophisticated representation 
of atmospheric chemistry, etc) are continuously included in order to obtain a more 
comprehensive representation of the complex interactions in the system.  
 
3.4 Numerical resolution of the equations 

3.4.1 Consistence, convergence and stability 
The equations that rule the climate system are partial differential equations 

(PDEs) such as those presented in section 3.3, except when extremely simplified models 
are used (section 3.2.1). It is first necessary to ensure that those equations are 
mathematically well-posed, i.e. that the problem has a unique solution that depends on 
the initial and boundary conditions. This requires that those initial and boundary 
conditions are properly specified. For instance, to solve the equation for temperature in 
the ocean knowing the velocity field (Eq. 3.10), we must specify the initial temperature 
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over the whole domain at a time t0 as well as one boundary condition over all the points 
of the spatial boundaries of the domain, which can be the value of the heat flux or of the 
temperature there. Below, we will consider that all the problems investigated are well-
posed. 

In order to solve the equations of the mathematical models developed for each 
component of the climate system (section 3.3), those models have to be transformed into 
numerical models that can be handled by a computer. The first method, which is probably 
the easiest to understand, is to approximate the derivatives in the partial differential 
equations by finite differences. This is called the finite difference method. The solution 
is no longer a continuous function (as for the PDEs) but a discrete one, only defined for 
specific times separated by the time step Δt, and specific locations separated by the 
spatial step Δx (plus Δy and Δz for a problem with three spatial dimensions).   

Imagine for instance, a very simple ordinary differential equation: 

= cos( )du A t
dt

     (3.18) 

where t is the time, u a state variable (for instance the velocity) which depends here only 
on the time, and A a constant. The derivative according to time could be approximated by 
a finite difference, leading to the finite difference equation: 

+ −
= Δ

Δ

1

cos( )
n nU U A n t

t
    (3.19) 

Un is the discrete solution of the finite difference equation at time step n. If Δt is constant, 
t=n Δt, assuming that the initial time is 0.  
 

 

Figure 3.12:  The analytical solution of equation 3.18 using A=1 and u(t=0)=0 
(black) and the numerical solution using Eq. 3.20 with a time step Δt =π/50 (red). 
The discrete solution Un at times nΔt have been joined by straight lines. Note that a 
much more precise solution could be obtained by using 

( )+ = + Δ + Δ1 cos(( 1/ 2) )n nU U t A n t  instead of Eq.3.20, i.e. by evaluating the 
cosine at time t=(t+1/2)Δt instead of time t=nΔt. 
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Knowing Un, this equation can be easily solved for Un+1(Fig. 3.12): 

( )+ = + Δ Δ1 cos( )n nU U t A n t     (3.20) 

Such problems are called initial value problems because, when the initial value is 
specified, values for any time can be obtained by advancing or “marching” in time. 

For a numerical method to be adequate, two fundamental properties must hold. 
First, the finite difference equation must be consistent with the partial differential 
equation. This means that as , the finite differential equation coincides 
with the PDE. This is absolutely essential to ensure that the equation that has been solved 
numerically is a reasonable approximation to the mathematical model. It can be checked 
by replacing all the terms by the Taylor series expansion. For the left-hand side of 
Equation 3.19, this gives: 

Δ → Δ →0, 0t x

+ = + Δ + Δ +
2

1 2
2

1 higher order terms
2

n n du d uU U t t
dt dt

 (3.21) 

and thus 

+ −
= + Δ +

Δ

1 2

2

1 higher order terms
2

n nU U du d u t
t dt dt

 (3.22) 

which effectively tends to du/dt as Δt tends to 0. This shows that the scheme is consistent. 
Secondly, the solution of the finite difference must converge to the solution of the 

PDE as . In our example, this means that Δ → Δ →0, 0t x

Δ → Δ( ) ( )  when U n t u t t → 0    (3.23) 

This convergence is related to the computational stability which states that a 
numerical scheme is computationally stable if the solution of the finite difference 
equation at a fixed time remains bounded as Δ → 0t . In more colourful language, it can 
be said that, in this case, the numerical model does not explode. Indeed, the Lax-
Richtmyer theorem, which can be formally demonstrated for a well-posed initial-value 
problem, states that, for a consistent numerical method, stability and convergence are 
equivalent. 

As a consequence, the practical methods used to test the convergence of a 
numerical scheme are based on an analysis of the stability of the scheme. In some cases, 
it is possible to explicitly demonstrate that the solution is bounded, a propriety generally 
conditioned by a criteria that governs Δt and Δx. A more general criterion to determine 
the largest time and spatial step allowed is the von Neumann method in which the 
stability of the finite difference equation is analysed by expressing the solution as an 
expansion of an appropriate set of basis functions, generally Fourier series. 

Analyses such as the one performed in Equation 3.22 also allow a truncation error 
(i.e. the difference between the PDE and the finite difference equation) to be defined. 
This error is characterised by an order, corresponding to the power of the first term of the 
difference. For the scheme described above, the error is thus of the first order in time. In 
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addition to uncertainties relating to the physical model itself, and the definition of initial 
and boundary conditions, the representation of numbers by computers using a finite 
number of digits is also a source of error in the numerical solution. 

 
3.4.2 Time and space discretisations using finite differences 
Many options are available for discretising an equation and the choice depends on 

the properties required in the numerical scheme. In addition to consistency and the 
stability for reasonably long time steps, the scheme must be precise enough, but not too 
demanding of computer time. We have presented a first example of time discretisation in 
section 3.4.1, which is called the upward scheme (or forward Euler method): 

+ −
=

Δ

1

(
n n

nU U F U
t

)     (3.24) 

for a right-hand side represented in a general way as a function F(Un). 
An alternative scheme is a centred difference (leapfrog scheme): 

+ −−
=

Δ

1 1

(
2

n n
nU U F U

t
)     (3.25) 

which has a second order truncation error and is thus in principle more precise than the 
first order upward scheme. However, this scheme allows the presence and growth of 
unphysical modes, and is thus generally stabilised by associating it with a time filter. 

In implicit schemes, the right-hand side is not only expressed at time step n but also 
at time step n+1. F then becomes, in general, a function of both Un and Un+1. If F is only 
a function of Un+1, the scheme is called fully implicit or backward. Implicit schemes 
require an equation or a system of equations to be solved to obtain Un+1, equations that 
could be non-linear. Implicit schemes could thus be relatively expensive in computer 
time. On the other hand, implicit schemes allow longer time steps, which in some 
circumstances is a clear advantage.  

The same variety of numerical schemes is available for space discretisation. 
Consider the diffusion equation: 

∂ ∂
=

∂ ∂

2

2

u k
t x

u
     (3.26) 

where k is a constant. This can be discretised as: 

+
+ −− − +

=
Δ Δ

1
1

2

2n n n n n
1j j j jU U U U U

k
t x

j    (3.27) 

The index j refers to point number j of the spatial grid, which is at a distance (j-1)Δx from 
the first grid point if the grid spacing Δx is constant. It can easily be shown that this 
scheme is consistent and that the truncation error is first order in time and second order in 
space. It is stable if: 
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Δ
≤

Δ 2

1
2

tk
x

     (3.28) 

illustrating the link usually present between Δt and Δx. Using this scheme, the solution at 
point j is updated at each time step n+1 from the values computed at time step n for 
points j-1, j and j+1 (Fig. 3.13). 

 
 

 

Figure 3.13: Schematic representation of the grid structure in space and time with 
one spatial dimension for the numerical scheme proposed in Eq. 3.27, showing that 

+1n
j

n
jU , +1U ndependents on −1jU , n

jU ..  

In the two examples above (Eqs. 3.18 and 3.26), only one equation for one variable 
was solved. However, when all the components of the climate system are considered, 
equations for several variables must be solved simultaneously. For numerical reasons, 
those variables are not necessary located at the same place on the grid, leading to what 
are called staggered grids. Arakawa and Lamb (1977) proposed a classification of these 
grids. Two popular ones are the B and the C grid. If we consider an elementary square of 
the grid for an ocean model, for instance, for the B grid, the temperature T (as well as the 
salinity, the pressure, and the density) are computed at the centres of the grid while the 
velocity components u and v are obtained at the corners of the grid elements (Figure 
3.14). For the C grid, the velocities are computed on the side of the elements. Staggered 
grids are also widely used for vertical elements, with the velocity usually computed at the 
boundary between the layers, while the temperature is defined at the centre of the layers. 
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Figure 3.14: The location of some variables on the staggered grids B and C 
according to Arakawa and Lamb’s (1977) classification. 

 
3.4.3 Spectral representation and finite element methods 
In addition to finite differences, several other methods can be use to discretise 

equations. One method is to integrate the basic equation of the system over a finite 
volume before the discretisation. This finite-volume method, has the advantage that it 
explicitly and easily ensures the conservation of some important properties. If particular 
hypotheses are made about the changes in the variables inside the volumes, numerical 
schemes similar to those described using finite-difference methods can be obtained. 

In the Galerkin approach, the numerical solution is discretised in space as a sum of 
k basis functions ϕk(x) using coefficients Ak that depend on the time, leading to a spectral 
representation of the solution: 

ϕ
=

= ∑
1

( , ) ( ) ( )
K

k k
k

U x t A t x    (3.29) 

The goal of the resolution of the problem is then to determine the coefficients Ak. The 
larger the number of basis functions retained (i.e. the larger k is), the more precise is the 
spatial representation of the solution. The big advantage of this method is that the space 
derivation of U(x,t) can be analytically computed from dϕk(x)/dx without any additional 
approximation. The choice of the basis function must be adequate. For a one-dimensional 
problem, Fourier series are a natural choice. For a problem with spherical geometry, in 
particular for global atmospheric models, spherical harmonics are used. They are the 
product of Fourier series in longitude and associated Legendre polynomials in latitude. 

The spectral and grid-point (also referred to as physical space, see for instance Fig. 
3.13) representations are complementary. The first provides an accurate computation of 
horizontal derivatives while the second forms a convenient framework to evaluate non-
linear terms as well as the physics of the model (for example, the computation of the 
radiative transfer). When the two approaches are combined, some transfers of the 
variables from the physical to the spectral space are required in the transform method. 
There must be an exact correspondence between the number of basis function and the 
horizontal resolution of the grid to avoid numerical problems during this transformation. 

The finite element approach is based on a similar approximation to Eq. 3.29 but 
instead of functions ϕk(x) that cover the whole domain as in the spectral method, local 
basis functions are used. For example, ϕk(x) can be a piecewise linear function equal to 1 
at a grid point and 0 at all the other points. 
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3.5 Testing the validity of models 
3.5.1 Verification, validation, testing 
Despite very careful design, there is no guarantee that a computer model will be 

adequate for its intended use: some processes treated as negligible can turn out to be more 
important than initially thought; a parameterisation may not be valid in the particular 
conditions of interest or may be incompatible with other hypotheses employed; the 
selection of parameters can be far from optimal; and so on. As a consequence, climate 
models have to be tested to assess their quality and evaluate their performance. In this 
framework, it is always necessary to keep in mind the scientific objectives of the study 
(or studies) that will be conducted using a particular model. Although the principles 
remain the same, the tests performed with a model developed to analysing the 
development of the global carbon cycle over the last million years (see section 5.3.2) are 
clearly different from those for a model providing projections of future climate changes at 
the highest possible resolution (see Chapter 6). 

A first step is to ensure that the numerical model solves the equations of the 
physical model adequately. This procedure, often referred to as verification (Fig. 3.15), 
only deals with the numerical resolution of the equations in the model, not with the 
agreement between the model and reality. It checks that no coding errors have been 
introduced into the program. The numerical methods used to solve the model equations 
must also be sufficiently accurate. Different methods are available to achieve this goal. A 
standard one is to compare the numerical solution with the analytical one for highly 
idealised test cases for which an exact solution is available. It is also possible to formally 
state that some parts of the code are correct, for instance, the one that solves large 
systems of n linear algebraic equations with n unknowns (which are often produced as 
part of the numerical resolution of the partial differential equations on the model grid). 

 

 

Figure 3.15: A modified version of Fig. 3.1 illustrating the verification and 
validation processes. An additional arrow from the analysis of the results towards 
model development has been added to show that validation is a continuous 
process.  
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The next step is the validation process, i.e. determining whether the model 
accurately represents reality. To do this, the model results have to be compared with 
observations obtained in the same conditions. In particular, this implies that the boundary 
conditions and forcings must be correctly specified to represent the observed situation. 
Validation must first be performed on the representation of individual physical 
processes, such as the formulation of the changes in the snow albedo in response to 
surface melting and temperature change. This is generally achieved for particular 
locations, during field campaigns specifically designed to study this process. They 
provide a much larger amount of very specific data than global data bases, allowing a 
detailed evaluation of the performance of the model on this topic. On a larger scale, the 
different components of the model (atmosphere, ocean, sea ice, etc, see section 3.3) have 
to be tested independently, ensuring that the boundary conditions at the interface with the 
other components are well defined. Finally, the results of the whole coupled model have 
to be compared with observations. All those steps are necessary because bad surprises are 
always possible after the different elements are coupled together, due to non-linear 
interactions between the components. Some problems with the model can also be masked 
by the formulation of the boundary conditions when components are run individually. 
However, having a coupled model providing reasonable results is not enough. In order to 
test whether the results occur for the correct reason, it is necessary to check that all the 
elements of the model are doing a good job, and that the satisfactory overall behaviour of 
the model is not due to several errors in its various elements cancelling each other out. 

When discussing verification and validation, we must always recognize that both 
of them can only be partial for a climate model, except maybe in some trivial cases. The 
accuracy of the numerical solution can only be estimated for small elements of the code 
or in very special (simplified) conditions. Indeed, if it were possible to obtain a very 
accurate solution to compare with the numerical model results in all possible cases, there 
would be no point in developing a numerical model! The comparison of model results 
with observations is also limited to some particular conditions and completely validating 
a climate model in all the potential situations would require an infinite number of tests. A 
climate model could thus never be considered as formally verified or validated. A model 
is sometimes said to be validated if it has passed a reasonable number of tests. In such a 
case, the credibility of model projections performed with such a model could be very 
high. However, there is no way to formally guarantee that the results of the model will be 
correct even if the conditions are only slightly different from those used in the validation 
process, in particular for a very complex system like the climate. Furthermore, there is no 
agreement in climatology as to what a reasonable number of tests is. 

The term “a validated model” and phrases like “the model has been validated” must 
therefore be avoided. Rather, the verification and validation should be considered as 
processes that never lead to a final, definitive product. The model should be continuously 
re-tested as new data or experimental results become available. The building of a model 
could then be viewed in the same way as a scientific theory. Hypotheses are formulated 
and a first version of the model developed. The results of the model are then compared to 
observations. If the model results are in good agreement with the data, the model could be 
said as to be confirmed for those conditions, so increasing its credibility. Nevertheless, 
this does not mean that the model is validated for all possible cases. If the model results 
do not compare well with observations, the model should be improved. This could lead to 
new hypotheses, to additional terms in the governing equations, or to the inclusion of new 
processes by new equations or new parameterisations.  

Alternatively, a disagreement between the model and observations can be related to 
an inadequate selection of the values of some parameters that are not precisely known 
(for instance the exchange coefficients in Eqs. 2.33 and 2.34). Adjusting those parameters 
is part of the calibration of the model, also referred to as tuning. Model developers and 
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users also may decide that, if the model cannot reproduce the observations in some 
special cases, this indicates that it is not valid for such conditions, although it can still be 
used in other situations where the tests indicate better behaviour. For instance, we can 
imagine a climate model that cannot simulate the climate of Mars correctly without some 
modifications; however, this does not invalidate it for modelling conditions on Earth. On 
the other hand, if it works well for both Mars and Earth, this is a good test of its 
robustness. 

The calibration of physical parameters is generally required and is perfectly 
justified as there is no a priori reason to select one particular value in the observed range 
of the parameters. It is also valid to calibrate the numerical parameters in order to obtain 
the most accurate numerical solution of the equations. However, care has to be taken to 
ensure that the calibration is not a way of artificially masking some deficiencies in the 
model. If this does occur, there is a high probability that the selected parameters will not 
provide satisfactory results for other conditions (e.g. the climate at the end of the 21st 
century). Performing many tests for widely different situations and for various elements 
of the model should limit the risk, but the number of observations is often too small to 
ensure that the problem has been completely avoided. An additional problem with the 
constant improvement of the model and of its calibration as soon as new data becomes 
available is the absence of independent data to really test the performance of the model. 
Ideally, some of the available information should be used for the model development and 
calibration, and some should be kept to assess its accuracy. Another good model practise 
is to choose or design models components for which the selection of one particular value 
of the parameters has only a small impact on model results, so reducing importance of the 
calibration.  

In all the tests performed with the model, it is necessary to estimate the agreement 
between model results and observations. This is a complex and sometimes under-valued 
task. Indeed, the comparisons between the results of various models have shown that a 
single model is never the best for all the regions and variables analysed. Introducing a 
new parameterisation or changing the value of a parameter usually improves the results in 
some areas and worsens them in others. The agreement should then be related to the 
intended use of the model. This could be done more or less intuitively by visually 
comparing maps or plots describing both the model results and the observations. 
However, a much better solution is to define an appropriate metric. For a single field, 
such as the annual mean surface temperature Ts, a simple root mean square (RMS) error 
may be appropriate: 

=
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where n is the number of grid points for which observations are available,  is the 

model surface temperature at point k and  is the observed surface temperature at 
point k. This estimate could be improved by taking into account the area of each grid 
point or by giving greater weight to the regions of most interest. If many variables have to 
be included in the metric, the RMS errors of different variables can be combined in 
various ways. The model data-comparison should also take into account the errors or 
uncertainties in both the model results and the observations. Errors in the observations 
can be directly related to the precision of the instruments or of the indirect method used 
to retrieve the climate signal (see for instance section 5.3.3). The uncertainties could also 
be due to the internal variability of the system (see sections 1.1 and 5.2), because 
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observations and model results covering a relatively short period are not necessarily 
representative of the mean behaviour of the system.  

 
3.5.2 Evaluating model performance 
Section 3.5.1 has stressed the absolute necessity of testing the quality of the model 

results fully. Here we will present some of the standard simulations that could be 
performed. However, we will not discuss the tests specifically designed to analyse the 
accuracy of numerical methods or of a particular parameterisation. 

The first requirement is that the model is able to simulate reasonably well the 
climate in recent decades for which we have good estimates (Fig. 3.16). This implies 
performing simulations including the evolution of both natural and anthropogenic 
forcings (section 5.5.2) over that period. Numerical experiments with a constant forcing 
set at the mean for recent decades or for pre-industrial conditions (i.e. before any 
significant anthropogenic forcing, generally 1750 or 1850) can also be conducted in order 
to characterise a quasi-equilibrium behaviour of the model. In this case, it is necessary to 
take into account the difference between the pre-industrial conditions simulated by the 
model and present-day observations. 

In these simulations, the long-term average of various variables, in all the model 
components, is compared with observations, generally interpolated on a common grid. 
Furthermore, the ability of the model to reproduce the observed climate variability on all 
time scales must be checked. This ranges from the relatively high frequency variations 
characteristic of temperature extremes such as heat waves to the most important modes of 
large-scale variability such as the El Niño-Southern Oscillation and the North Atlantic 
Oscillation (see section 5.2). Finally when driven by an adequate forcing, the climate 
models must be able to reproduce the observed warming of the Earth’s surface over the 
last 150 years as well as the other recent climate changes. 

 

 

Figure 3.16: Classical tests performed on climate models.  

Recent decades only cover a small fraction of the climate variations observed since 
the Earth’s formation (see Chapter 5) and expected in the future (see Chapter 6). To test 
the ability of models to reproduce different climates, it is thus necessary to try to simulate 
some past conditions. The quality of the available observational data is (much) lower than 
that for recent decades and it may sometimes be hard to draw reliable conclusions from 
model/data comparisons for some past periods. Nevertheless, that is the only sample of 
possible states of the climate system that is available to us. 
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The second natural test period (Fig. 3.16) is the Holocene and the last millennium, 
for which we have a reasonably good knowledge of climate variations (see section 5.5). 
Although significant uncertainties are present, the forcing is much better known than for 
earlier periods. Furthermore, the boundary conditions (such as the topography or ocean 
bathymetry, see section 1.5) are similar to the present ones. The last glacial maximum is 
also a key period because it represents a relatively recent climate clearly different from 
that of recent decades (see section 5.4.2). In order to perform such simulations, unless the 
variables are computed interactively, it is necessary to specify variables such as the 
position and shape of the large ice sheets present on continents, the changes in the 
land/sea boundaries and ocean depth due to the lower sea levels, the modification in the 
vegetation cover and in the radiative properties of the atmosphere (in particular due to the 
higher dust content). All these elements can be sources of uncertainty for the climate 
simulation. Pre-quaternary climates (see section 5.3) offer an even wider range of climate 
variations but the uncertainties on the forcing, boundary conditions and the climate itself 
are larger. As a consequence, these periods are not currently used as standard tests for 
climate models, although this will probably change in the near future as new information 
becomes available. 

Finally some idealised experiments are performed with climate models (Fig. 3.16). 
These could not be directly compared to observations as they do not correspond to any 
past or present situation. However, they are very useful to document the model response 
to a simple, well-defined perturbation. Two standard thought-experiments are generally 
conducted. The first is a doubling of the atmospheric CO2 concentration in the model, a 
test required to estimate the climate sensitivity of the model (see section 4.1.3). In the 
second (water hosing), large amounts of freshwater are poured into the North Atlantic to 
analyse the climate changes induced by the associated modification of the oceanic 
circulation (see section 5.5.1). These tests also allow the behaviour of different models to 
be compared in exactly the same experimental conditions. This leads to model inter-
comparison exercises whose goals are a better understanding of the causes of the different 
responses of the various models. The results of such inter-comparisons are archived in 
data bases to ensure wide access. The results of other simulations (for example, mid-
Holocene or last glacial maximum climates, climate change during recent decades, future 
climate change) are also stored in public or semi-public databases so that they can be 
analysed independently by large numbers of scientists. 
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Exercises  

Exercises are available on the textbook website (http://www.climate.be/textbook) and on 
iCampus for registered students. 


