
Vol.:(0123456789)1 3

Climate Dynamics 
https://doi.org/10.1007/s00382-018-4292-2

Reemergence of Antarctic sea ice predictability and its link to deep 
ocean mixing in global climate models

Sylvain Marchi1  · Thierry Fichefet1 · Hugues Goosse1 · Violette Zunz2 · Steffen Tietsche3 · Jonathan J. Day3 · 
Ed Hawkins4

Received: 20 September 2017 / Accepted: 31 May 2018 
© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Abstract
Satellite observations show a small overall increase in Antarctic sea ice extent (SIE) over the period 1979–2015. However, 
this upward trend needs to be balanced against recent pronounced SIE fluctuations occurring there. In the space of 3 years, 
the SIE sank from its highest value ever reached in September 2014 to record low in February 2017. In this work, a set 
of six state-of-the-art global climate models is used to evaluate the potential predictability of the Antarctic sea ice at such 
timescales. This first multi-model study of Antarctic sea ice predictability reveals that the ice edge location can potentially 
be predicted up to 3 years in advance. However, the ice edge location predictability shows contrasted seasonal performances, 
with high predictability in winter and no predictability in summer. The reemergence of the predictability from one winter to 
next is provided by the ocean through its large thermal inertia. Sea surface heat anomalies are stored at depth at the end of 
the winter and influences the sea ice advance the following year as they resurface. The effectiveness of this mechanism across 
models is found to depend upon the depth of the mixed layer. One should be very cautious about these potential predictability 
estimates as there is evidence that the Antarctic sea ice predictability is promoted by deep Southern Ocean convection. We 
therefore suspect models with excessive convection to show higher sea ice potential predictability results due to an incorrect 
representation of the Southern Ocean.
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1 Introduction

Unlike the rapid sea ice losses reported in the Arctic, the 
Antarctic SIE has been increasing during the 1979–2015 
period for all seasons (Comiso et al. 2017), despite global 

warming. This small overall increase is a balance between 
large regional variations. The Ross Sea and the eastern 
Antarctic sector positively contribute to the sea ice cover 
increase, while the Amundsen and Bellingshausen Seas neg-
atively contribute to it (e.g., Parkinson and Cavalieri 2012; 
Comiso et al. 2017). This sea ice expansion is seemingly at 
odds with the evolution of sea ice simulated by almost all 
today’s climate models, which show a significant decrease 
in sea ice cover over the same period (Turner et al. 2013a). 
The inconsistency between the observed and simulated sea 
ice may reflect a deficient or even missing representation of 
the physical processes governing the Antarctic sea ice. Inter-
estingly, Meehl et al. (2016) found that the models which 
correctly sample the observed natural variability of the SIE 
over 2000–2014 within the fifth phase of the Coupled Model 
Intercomparison Project (CMIP5) also capture the expansion 
of the SIE in all seasons.

The evolution of the Antarctic sea ice at the seasonal-
to-interannual timescales has been related to both atmos-
pheric and oceanic processes. The two studies of Gordon 
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and Taylor (1975) and Martinson (1990) notably initiated 
the understanding of the interactions between the sea ice, 
the winds and the ocean. Over the last decades, multi-
ple mechanisms have been proposed as potential drivers 
of the Antarctic sea ice cover changes. As yet, none of 
them has provided a single and fully satisfactory explana-
tion. Several studies traced recent changes in atmospheric 
circulation patterns in the Antarctic, and possible impact 
on Antarctic sea ice, to teleconnections with the tropical 
Pacific and Atlantic Oceans (Ding et al. 2011; Okumura 
et al. 2012; Li et al. 2014; Simpkins et al. 2014; Meehl 
et al. 2016). A positive Southern Annular Mode (SAM)—
associated with an intensification and a poleward shift of 
the westerly winds—is also expected to promote an overall 
sea ice expansion due to an increased equatorward Ekman 
transport of cold surface waters (Thompson et al. 2011), 
with a noticeable exception in the West Antarctic region. 
In this region, the Amundsen Sea Low (ASL) variabil-
ity influences the climate by controlling the meridional 
component of the large-scale atmospheric circulation. This 
results in a reduced SIE in the Bellingshausen and eastern 
Amundsen Seas and an increase in the western Amund-
sen and Ross Seas (e.g., Stammerjohn et al. 2008; Turner 
et al. 2013b; Raphael et al. 2016). Nevertheless, climate 
general circulation models (GCMs) fail at reproducing the 
observational link between SAM, SST and Antarctic sea 
ice on the inteannual timescale. They even tend to produce 
an ocean surface warming and a sea ice lost in response to 
a strengthening of the SAM (e.g., Bitz and Polvani 2012; 
Sigmond and Fyfe 2014; Haumann et al. 2014). Ferreira 
et al. (2015) sheds light on this apparent disagreement by 
introducing a two timescale response. While the strength-
ening of the westerly winds leads to an initial surface 
cooling and sea ice expansion, the long-term response is 
that of a surface warming and sea ice loss. Purich et al. 
(2016) recently argued that part of this disagreement lies 
in the model underestimation of westerly wind changes. 
To explain the sea ice expansion during the last decades, it 
has also been suggested that freshwater influx from basal 
melt of ice shelves could favour the formation of sea ice 
locally through an enhanced stratification (Bintanja et al. 
2013). This is though a contentious issue since both Swart 
and Fyfe (2013) and Pauling et al. (2016) were unable 
to confirm this mechanism. At the regional scale, Hol-
land and Kwok (2012) identified wind-driven dynamic 
and thermodynamic changes as the principal cause of the 
observed sea ice cover trends. However, it is unclear how 
the wind-driven sea ice transport alone could explain the 
observed concurrent sea surface temperatures (SST) down-
ward trends. This problem is partly figured out over the 
seasonally sea ice covered region with the ice-ocean feed-
back introduced by Goosse and Zunz (2014) and observa-
tionally proven and quantified by Lecomte et al. (2017).

The year 2016 has been marked by anomalous atmos-
pheric circulation patterns, mainly in the Weddell Sea and 
Ross Sea sectors, which prevailed throughout the springtime 
and lead to strong winds and advection of warm air from 
the north. Those atmospheric conditions, associated with a 
strong negative November SAM index, induced a massive 
sea ice melt (Turner et al. 2017), causing the Antarctic sea 
ice in 2017 to shrink to its smallest summer extent on record 
since the beginning of satellite observations. Stuecker et al. 
(2017) also attributed this unprecedented low Antarctic SIE 
to positive SST anomalies, caused by an extreme El Niño 
event that peaked in over the period December 2015–Febru-
ary 2016 and a concurrent negative phase of the SAM. The 
2017 record low came a bit more than 2 years after several 
monthly record high SIEs in 2014 and decades of moderate 
sea ice growth. Those rapid changes highlight the impor-
tance of SIE natural variability in the Antarctic. According 
to Armour et al. (2011), however, this increasing variance 
should not be interpreted as a warning sign of an approach-
ing tipping point for the Antarctic sea ice.

Most CMIP5 models notably fail in reproducing the 
natural variability of the Antarctic sea ice (e.g., Turner 
et al. 2013a; Zunz et al. 2013). Those two studies pointed 
out marked seasonal variations of the interannual variabil-
ity simulated for each month of the year compared to the 
observations, as well as an overestimation of the observed 
winter interannual variability. In addition, much of the SIE 
variability in models originates from changes in intensity of 
deep ocean convection (e.g., Latif et al. 2013; Behrens et al. 
2016). As yet, there was no clear evidence of this relation 
in recent observations. However, the return of the Weddell 
polynya in winter 2017 might support the existence of a 
multi-decadal internal mode of variability in the Southern 
Ocean, suggesting that natural variability alone could have 
explained the Antarctic sea ice expansion over the last dec-
ades (Polvani and Smith 2013; Mahlstein et al. 2013; Zunz 
et al. 2013).

Until now, Antarctic sea ice predictability has not 
received much attention. Due to the lack of observations and 
model biases, the scientific community has mainly focused 
on idealised studies so far. Holland et al. (2013) character-
ised the initial value predictability of the ice edge location in 
the coupled atmosphere–ocean–land–sea ice model CCSM3. 
They found that the predictability up to 2 years ahead is 
mainly driven by oceanic processes through the reemergence 
of previous winter SST conditions. Those processes are 
responsible for intermittent performance with low summer 
and high winter predictability, this behaviour being closely 
related to the seasonal magnitude of the vertical ocean mix-
ing. Zunz et al. (2014) applied different initialisation proce-
dures to the Earth system model of intermediate complex-
ity, LOVECLIM1.2, and evaluated their impact on sea ice 
predictability in the Southern Ocean. They confirmed the 
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role of the ocean as a source of sea ice predictability at the 
interannual timescale (2 years ahead). They also addressed 
the sea ice predictability at the multi-decadal (10–30 years) 
timescale. They found a significant correlation of the SIE 
trend between the hindcasts and the pseudo-observations 
over the period 10–30 years. Finding that, initialisation sys-
tematically improved those correlations. However, much 
work still has to be done to harness this potential predict-
ability in a real prediction system. Using CMIP5 decadal 
hindcasts, Yang et al. (2016) showed poor Antarctic sea ice 
predictive skill on all timescales irrespective of whether 
the projections were initialised or not. This is an indication 
that more effort should be invested in order to understand 
the origin of the deficiencies in real forecast performance. 
Should those deficiencies primarily originate from a sparse 
and incomplete knowledge of Antarctic initial conditions 
and or model biases, or should they rather be attributed to 
limited model predictive skill at the seasonal-to-interannual 
timescales? This question motivated our model intercom-
parison study. We assessed in a systematic way the Antarc-
tic sea ice predictive skill of multiple climate models and 
showed that the predictive skill is highly model-dependent. 
This model intercomparison allowed us to identify robust 
Antarctic sea ice predictability characteristics and possible 
related mechanisms inherent to up-to-date GCMs, creating 
the potential for skilful Antarctic sea ice forecasts at the 
seasonal-to-interannual timescales.

Our work follows on from numerous studies dedicated 
to the predictability of Arctic sea ice, carried out within the 
Arctic Predictability and Prediction on Seasonal to Inter-
annual Timescales (APPOSITE) project (Day et al. 2016). 
This project aimed to define the scope of useful climate 
predictions in the Arctic, including the identification of the 
timescales on which Arctic climate is potentially predictable. 
The ability to perform accurate predictions of the Arctic 
climate was tackled with several GCMs. Additional informa-
tion about this project is available at http://arp.arcti c.ac.uk/
proje cts/arcti c-predi ctabi lity-and-predi ction -seaso nal-inte/. 
Although this dataset was initially designed to address Arc-
tic climate predictability, we benefited from global climate 
simulations to explore the predictability of the Antarctic sea 
ice. This study should be regarded as an extension for the 
Antarctic of that conducted by Tietsche et al. (2014) in this 
respect.

We proceed in Sect. 2 with a brief introduction to the 
idealised experiments that we used. A detailed description 
of the APPOSITE simulations can be found in Day et al. 
(2016). We then give a general overview of the mean climate 
state [SIE and mixed layer depth (MLD)] simulated by the 
six models utilised. We conclude Sect. 2 with a description 
of the metric used to assess the predictability of the sea ice 
edge location. The results of the predictability of the ice 
edge location are then presented in Sect. 3 and discussed in 

Sect. 4 in light of the results that we gained from the analysis 
of the predictability of the ocean heat content computed over 
its first 100 metres.

2  Methodology

2.1  The APPOSITE project

This study aims at giving an overview of the ability of 
today’s GCMs to predict the Antarctic sea ice on seasonal-
to-interannual timescales. Due to its nonlinear nature, the 
climate system is highly sensitive to small perturbations in 
the initial state at such timescales. As both observations and 
models are incomplete and error-prone, it is difficult to cor-
rectly estimate the part of the total uncertainty accounted for 
the initial state. In order to statistically address the sensitiv-
ity to the initial conditions, the models were run from a set 
of initial conditions.

Six coupled atmosphere–ocean–sea ice GCMs were used 
to assess the initial-value predictability of Antarctic sea ice. 
They all include a fully prognostic sea ice component (see 
Table 1). After a spin-up phase of at least 100 years that 
ensure the models to be close to equilibrium, long control 
simulations with constant radiative forcing representative 
of the end the twentieth century (see Table 1) were con-
ducted in order to have a good estimate of the mean state 
and internal variability of the system (further discussed in 
Sect. 2.2). These simulations were used as a reference to 
evaluate the predictability arising from the knowledge of 
the initial conditions (see Sect. 2.3). It appeared as though 
that the models do not settle down into a stable climate after 
the spin-up phase, leading to a drift in the simulated SIE 
(see Sect. 2.2). This situation was already reported in Day 
et al. (2016) in the Arctic for many models and turns out to 
be true for all the models in the Antarctic. The influence of 
this drift on the metric used to assess the predictability is 
discussed in Sect. 2.3.

The ensemble experiments were generated from the 
control simulations on multiple start dates. Within a given 
ensemble, each ensemble member was initialised from the 
same atmosphere, land and sea ice conditions. They only 
differ by a slightly modified ocean state, a white noise of 
amplitude 10−4 K being applied to the SSTs. This perturba-
tion is tiny enough to assume a virtually perfect knowledge 
of the initial state. The number of start dates varies between 
8 and 18. They are sufficiently spaced in time to encompass 
a wide range of sea ice conditions (see Figure S1 of the sup-
plementary material). Each ensemble includes from 7 to 16 
members depending on the model. The number of ensem-
bles and ensemble members for each model is specified in 
Table 1. The APPOSITE project was originally designed 
to assess late summer sea ice conditions in the Arctic. That 
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is why the models all provided with ensemble experiments 
initialised on July 1st even if this requirement is not relevant 
for Antarctic sea ice predictability. Some models also con-
tributed to the predictability experiments with simulations 
initialised on January 1st, May 1st and November 1st (see 
Table 1). Irrespective of the start month, all the predictions 
are 36 months long except for MIROC5.2, which are 42 
months long.

2.2  Models’ mean state and internal variability

2.2.1  Sea ice

Figure 1 illustrates how the Antarctic SIE is simulated by the 
six models. Though the annual cycle of the SIE is correctly 
reproduced with a maximum SIE in September and a mini-
mum SIE in February, the simulated SIE does not track the 
observations. It bears emphasizing that most today’s GCMs 
fail to reproduce the correct magnitude of the SIE all over 
the year [refer to Turner et al. (2013a) and Zunz et al. (2013) 
for a discussion of the CMIP5 models mean state]. Most of 
the models selected here (EC-Earth2.2, ECHAM6-FESOM, 
GFDL CM3, MIROC5.2 and MPI-ESM-LR) tend to under-
estimate the SIE. The situation is particularly problematic 
for ECHAM6-FESOM and MIROC5.2, those models pro-
ducing little sea ice in winter with no remaining sea ice in 
summer. HadGEM1.2 is the only one to produce too much 
sea ice throughout the year. It is worth noticing that a model 
that simulates a small SIE in winter consistently produces a 
small SIE in summer and vice versa. Looking at the sea ice 
concentration (SIC) field patterns in Figure S2 of the sup-
plementary material reveals that the Weddell Sea contributes 
much of the remaining summer sea ice.

Like the SIE mean state, the internal variability of the 
SIE simulated by the models is in disagreement with obser-
vations. The standard deviation of the observed SIE is 
nearly flat throughout the year, whereas it shows marked 
seasonal variations in the models. This is especially true 
for ECHAM6-FESOM, MIROC5.2 and MPI-ESM-LR. All 
the models but HadGEM1.2 tend to have their minimum of 
variability in February. This minimum of variability coin-
cides with the minimum of SIE and probably results from 
it. At the regional scale (see Figure S3 of the supplemen-
tary material), the observed internal variability of the SIE 
is ring-shaped in winter. The interior of the sea ice is in 
fact characterised by smooth variations of the SIC field and 
most of the variability is limited to the marginal ice zone. 
This is in sharp contrast with the variability simulated by 
the models. Although they succeed in reproducing the high 
SIC variability in the marginal sea ice zone, most of them 
tend to produce too much SIC variability within the pack. 
The SIC variability patterns shown in Figure S3 of the sup-
plementary material are representative of the magnitude of 

the interannual variations of the ice edge position. Much of 
the SIC variability within the pack must therefore not be 
ascribed to the sea ice drift observed in the control simula-
tions. We will see in Sect. 2.2.2 that those extensive areas of 
large SIC variability are characterised by anomalous open-
ocean deep convection events (see Fig. 3).

We mentioned in Sect. 2.1 that the APPOSITE control 
runs are subject to a drift, i.e., a long-term trend. This is 
especially clear for the SIE. The magnitude of the annual 
drift is given in Table 1, while the plots of the September 
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Fig. 1  Characteristics of the Antarctic SIE simulated by the six 
models (up: the mean over the control run years for each individual 
month; down: the standard deviation over the same period and for 
each month too. The SIE was previously detrended before comput-
ing the standard deviation). The mean observed SIE and the associ-
ated standard deviation are also shown for comparison. They were 
retrieved from the global sea ice concentration data record (SSMI/
SSMIS) of the Ocean and Sea Ice Satellite Application Facility (OSI 
SAF, EUMETSAT 2015). This dataset covers the period October 
1978–April 2015 and has a spatial sampling of 10 km and 12.5 km. 
The performance of this dataset is discussed in Ivanova et al. (2015)
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control run SIE and associated drift are provided in Figure 
S1 of the supplementary material. Those diagnostics show 
that all the models have a negative September SIE trend, 
except HadGEM1-2 which has a positive one. All trends are 
significant at the 95% level.

From this perspective, GCMs leave room for improvement 
concerning the Antarctic sea ice. Nevertheless, this glaring 
disagreement between models and observations fully justifies 
the use of a perfect model approach as it helps to gain insight 
into the predictability properties of the Antarctic sea ice.

2.2.2  Mixed layer

The mixed layer south of the Antarctic circumpolar current 
(ACC) is strongly influenced by the presence of sea ice (Mar-
tinson 1990; Pellichero et al. 2017). Marked seasonal varia-
tions of the mixed layer depth are observed in this part of the 
Southern Ocean with values exceeding 100 m at some loca-
tions (Pellichero et al. 2017). The seasonal cycle of the MLD 
closely follows the seasonal cycle of the sea ice (not shown). 
Winter cooling and formation of sea ice destabilize the water 
column and deepen the mixed layer, while warming and fresh-
ening of the surface, associated with the summer sea ice melt-
ing, cause the mixed layer to shallow. This observational link 
between the sea ice and the mixed layer has also been reported 
in models (see for instance Barthélemy et al. 2015).

The depth of the mixed layer is important as it reflects 
the amount of water and accumulated heat which is directly 
available to interact with sea ice. As a consequence, it is 
essential to correctly represent the mixed layer in the regions 
covered by sea ice in climate models to properly simulate the 
observed mean state of the sea ice and its natural variability. 
Besides, we will show in Sects. 4.1 and 4.2 that the penetra-
tion of the SST anomalies in the ocean is closely tied to the 
seasonal cycle of the MLD in the regions seasonally capped 
by sea ice. Temperature fluctuations at the base of the mixed 
layer reflect the temperature fluctuations at the surface. For 
sufficiently deep winter mixed layers, the winter tempera-
ture anomalies at depth are likely to persist and influence 
the surface temperatures the following year. We thus found 
useful to discuss the ability of our six models to represent 
the seasonal evolution of the MLD.

The lack of in-situ measurements makes difficult to 
explore the mixed layer characteristics in the Southern 
Ocean, especially in the zone seasonally covered by sea ice. 
Recently, Pellichero et al. (2017) constructed a 10-year cli-
matology of the MLD in this ocean by examining more than 
465,000 hydrographic profiles. Those profiles combine sev-
eral sources of information, including elephant seal-derived 
observations, ship-based and Argo float observations. The 
MLD was retrieved from density profiles by combining three 
criteria that give three estimates of the MLD, following the 
approach of Holte and Talley (2009). One of the criteria 

consists in inspecting the shape of each individual profile, 
while the two others are based on a density threshold of 0.03 
kg m −3 and vertical density gradient of 0.0005 kg m −3 dbar−1 . 
Figure 2 shows the mean state of the observed MLD averaged 
over the summer months (January, February and March), the 
winter months (July, August and September) as well as the 
amplitude of the seasonal cycle (defined as the difference 
between the mean winter MLD and the mean summer MLD). 
Those three quantities were also computed for the six models.

Although the models that we used provided an MLD 
diagnostic, we decided not to work with it for two reasons. 
Firstly, we noticed that the definition of the MLD is not 
always clearly stated in the model description so that differ-
ent models might use different criteria. Secondly, the models 
for which the method of calculation is not reported probably 
follow the density �

�
 threshold of 0.125 kg m −3 from the 

near surface recommended by CMIP5. Heuzé et al. (2013) 
showed that this value is too high to detect the real MLD 
in the weakly stratified Southern Ocean. Consequently, the 
most appropriate criterion Δ�

�
≥ 0.03 kgm−3 was selected 

in this study [the reader is referred to Sallée et al. (2006) and 
de Boyer Montégut (2004) for more details]. This choice of 
density threshold value criterion was also motivated by the 
comparison to the observations, as this criterion was used 
to produce the mixed layer climatology discussed above. 
Note that the potential density was directly available for the 
three models GFDL CM3, MPI-ESM-LR and MIROC5.2, 
while it needed to be computed from monthly mean potential 

Fig. 2  a–d Representation of the summer MLD (left), winter MLD 
(centre) and amplitude of the MLD seasonal cycle (right) averaged 
over the control run years for EC-Earth2.2, ECHAM6-FESOM and 
GFDL CM3. MLDs values are in metres. The colour scale is limited 
to values between 0 and 100 m for the summer, while it is extended 
to 700 m for the winter and the amplitude of the seasonal cycle. The 
winter MLD simulated by GFDL CM3 can exceed this threshold 
value, but only for a restricted number of grid points. The maximum 
winter MLD is 1262 and 895 m for GFDL CM3 in the Indian Ocean 
and the Ross Sea, respectively. The mean state (standard deviation) 
of the ice edge location in summer and winter is represented by the 
thick (thin) black curve(s). Note that, for the models, the standard 
deviation of the ice edge location was computed from the detrended 
ice edge location time series for each month and each longitude sepa-
rately. The MLD climatology of Pellichero et al. (2017) is also pre-
sented with the observed ice edge location and its standard deviation, 
for comparison. The ice edge location was retrieved from the global 
sea ice concentration data record (SSMI/SSMIS), which covers the 
period October 1978 to April 2015 (OSI SAF, EUMETSAT 2015). 
e–h Same as before, but for HadGEM1.2, MIROC5.2 and MPI-ESM-
LR. MLDs values are still in metres. The winter MLD simulated by 
HadGEM1.2 and MIROC5.2 go up to 1169 and 1337 m at some grid 
points, respectively. The MLD climatology of Pellichero et al. (2017) 
is presented with the observed ice edge location and its standard 
deviation, for comparison. The ice edge location was retrieved from 
the global sea ice concentration data record (SSMI/SSMIS), which 
covers the period October 1978–April 2015 (OSI SAF, EUMETSAT 
2015)

▸
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Fig. 2  (continued)
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temperatures and salinities for EC-Earth2.2, ECHAM6-
FESOM and HadGEM1.2.

It can be seen from Fig. 2 (left column) that the MLD 
simulated by the models in summer is spatially uniform 
over the part of the Southern Ocean seasonally capped 
by sea ice. Besides, it rarely exceeds 50 m. This value is 
close to the observed summer MLD. Much of the differ-
ences between the simulated and observed MLDs arise in 
winter. The winter MLDs simulated by ECHAM6-FESOM, 
GFDL CM3, HadGEM1.2, MIROC5.2 and MPI-ESM-LR 
are consistently larger than the observations almost eve-
rywhere in the Southern Ocean. Apart from the coast, the 
EC-Earth2.2 model is the only model which simulates too 
shallow mixed layers over the regions seasonally covered 
by sea ice. Despite the reported magnitude biases, the broad 
meridional evolution of the winter MLD simulated by the six 

models fits with the climatology of Pellichero et al. (2017). 
All the models simulate deep mixed layers in coastal areas 
and in the vicinity of the ice shelves. They typically reach 
the ocean floor, which is in agreement with observations. 
Those coastal areas are associated with the production of 
dense waters. Unlike observations, the deep coastal mixed 
layers also extend to the open ocean in ECHAM6-FESOM, 
GFDL CM3, HadGEM1.2, MIROC5.2 and MPI-ESM-
LR. Such open ocean deep mixed layers are almost exclu-
sively found in the Ross and Weddell Seas. The mean state 
of the winter MLD at those locations can go up to 700 m 
depending on the model. It even locally exceeds 1000 m 
in GFDL CM3, HadGEM1.2 and MIROC5.2. Away from 
the deep open ocean mixed layers, the MLD never exceeds 
120 m. This zone of intermediate MLD values encloses the 

Fig. 3  Maximum MLD (in 
metres) found in the control 
run for each model. The colour 
scale is limited to values 
between 0 and 5000 m. The 
blue line encloses the regions of 
the Southern Ocean where the 
MLD over bathymetry quotient 
exceeds 50%. The maximum 
MLD climatology of Pellichero 
et al. (2017) is also shown for 
comparison, with colour scale 
values ranging from 0 to 500 m
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continent and extends over the ACC front, where the mixed 
layer deepens again.

Heuzé et al. (2013) reported those open ocean regions as 
the source of much Antarctic dense bottom water formation 
in CMIP5 models, while the production of dense bottom 
water at those locations is extremely rare in observations. 
Figure 3 shows the maximum MLD found in the control run 
for each individual grid point. The blue contour in each indi-
vidual map encloses the regions where the maximum MLD 
exceeds half of the whole water column. The identified areas 
correspond to the regions where deep convection is likely to 
occur. Heuzé et al. (2013) asserted that the regions defined 
in this way are insensitive to the criterion used to detect deep 
convection. Figure 3 indicates that deep convection events 
are widespread and occur in the vicinity of the coast as well 
as in the open ocean, where the deepest MLDs are found. In 
contrast to the five other models, EC-Earth2.2 simulates few 
deep convection events in the open ocean. The infrequency 
of those events in the Weddell Sea accounts for the shallow 
mean state of the winter MLD in Fig. 2.

2.3  Metric used to assess the predictability

In order to assess the initial-value predictability, we char-
acterised the ensemble predictions with the prognostic 
potential predictability (PPP) introduced by Pohlmann et al. 
(2004). This metric has been extensively used in idealised 
potential predictability studies (see for instance Koenigk and 
Mikolajewicz 2008; Holland et al. 2013; Zunz et al. 2014; 
Hawkins et al. 2016).

The PPP basically compares the variance of the ensemble 
predictions (which gives an idea of the ensemble spread) to 
the variance of some reference forecast, chosen in this case 
as the control simulation variance �2

clim
:

where xij(t) is the simulated value of some climate variable 
x at time t for the jth member of the ith prediction ensemble, 
and x̄i(t) denotes the ensemble mean at time t for the ensem-
ble i. i ranges from 1 to N, the number of ensembles, while j 
ranges from 1 to M, the number of members per ensemble. A 
PPP value of 1 indicates perfect predictability (all members 
forecast the same evolution of the variable x). Conversely, 
a value of 0 means that the ensemble variance converges to 
the variance of the reference simulation. This last situation 
implies that no more information can be extracted from the 
knowledge of the initial state. As in Pohlmann et al. (2004), 
the statistical significance of the PPP was estimated using 

(1)PPP(t) = 1 −

1

(N(M − 1))

∑N

i=1

∑M

j=1

�

xij(t) − x̄i(t)
�2

𝜎
2

clim

an F-test which takes into account the effect of serial cor-
relation in the control run time series.

Metrics like the PPP are known to be sensitive to the 
method used for choosing the reference climatology (see 
Hawkins et al. 2016). In the special case of the PPP, this 
choice has a direct impact on �

clim
 , the standard deviation 

of the reference climatology. A drift in the control simula-
tions leads to higher values of �2

clim
 than would be expected 

in a steady state. As a result, �2

clim
 may be higher than the 

limit of ensemble variance and leads to overoptimistic PPP 
estimates. Similarly, it is also important to compute the vari-
ance of the control time series for each of the 12 calendar 
months, rather than having a single estimate, to include the 
potential influence of marked seasonal variations of the vari-
ance (as depicted in Fig. 1b for the SIE standard deviation). 
Thus we systematically removed, for all variables, the linear 
trend of the control time series for each month of the year, 
before calculating the variability of the control simulation. 
The post-processed variables like the ice edge location and 
the ocean heat content were first computed from the unde-
trended sea ice concentration and temperature fields and, 
then, we detrended the corresponding time series. We expect 
the PPP values presented to give an unbiased estimate of 
the predictability for each model. However, this transient 
climate may affect the properties of the climate system, thus 
influencing its predictability. Nonetheless, more start dates 
would be required to correctly sample the predictability of 
the system over the same baseline climate and thus robustly 
investigate the state dependency of the predictability.

3  Results

3.1  Predictability of the ice edge location

We applied the PPP metric to the ice edge location as 
in Holland et al. (2013). It is defined for each longitude 
as the northernmost latitude where the Southern Hemi-
sphere SIC exceeds 15%. Each panel of Fig. 4 shows the 
PPP computed for a given model. The time evolution of 
the PPP throughout the 36 months of integration (42 for 
MIROC5.2) is plotted along the horizontal axis, i.e., from 
left to right, all the ensemble experiments starting on July 
1st. The six models display high values, i.e., close to one, 
during the first months of integration, even though we 
already notice some meridional differences. Predictabil-
ity of the ice edge location rapidly falls to nearly zero in 
EC-Earth2.2 everywhere, whereas PPP remains high in the 
other models until December at some locations. The sum-
mer (January, February and March) is then characterised 
by low and generally not significant PPP values in many 
locations. This feature is shared by all the models. This 
period when the ice edge is not predictable is followed by 
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a marked increase of the PPP at the beginning of the sea 
ice growing season around May. All models apart from 
EC-Earth2.2 share this feature.

The reemergence of the predictability of the ice edge 
location is consistent with previous studies (Holland et al. 
2013; Zunz et al. 2014), despite the choice of a different 
start month (January 1st). This suggests that skilful interan-
nual sea ice predictions could be achieved from various start 
months, not just January. This is confirmed by looking fur-
ther at the role of the start month for each model separately, 
by applying the PPP metric to the other start months avail-
able. Figures are provided in the supplementary material 
(see Figure S4). It ensues from this additional analysis that 
the overall behaviour depicted above for the ensemble pre-
dictions started on July 1st is still valid. The ice edge loca-
tion is still not predictable during the summer period, with a 
noticeable exception for the ensemble predictions initialised 

on January 1st. From this start month, the ice edge location 
is predictable during the first months of integration, that is in 
summer, at the longitudes where summer sea ice persists. As 
the summer ice edge location becomes unpredictable during 
the second and third years of prediction, this result is plainly 
attributed to the direct influence of the initial conditions on 
the ensemble members evolution. The skill at some lead time 
is highly dependent on when the forecast is started (skil-
ful PPP values found at longer lead times for predictions 
started on January 1st). A similar result was found in the 
Arctic by Day et al. (2014b). Nevertheless, the choice of the 
start month does not affect the predictability reemergence 
described above. Note that no additional data was provided 
for EC-Earth2.2, preventing us from checking any improve-
ment with another start month.

The locations where the predictability reemerges vary 
between the models even if some are shared by several 

Fig. 4  Prognostic potential 
predictability (PPP) of the ice 
edge location as a function of 
longitude and lead time for the 
six models used. The forecast 
lead time is from left to right, 
July 1st corresponding to the 
start month. Areas in grey 
represent the longitudes free of 
sea ice during summer, while 
areas outlined in black refer to 
values that are significant at the 
95% level. A map of Antarctica 
is included in each panel to 
make the PPP results easier to 
interpret. The sectors constitut-
ing the Southern Ocean, i.e. 
the Indian Ocean, the Pacific 
Ocean, the Ross Sea, the 
Bellingshausen and Amundsen 
Seas and the Weddell Sea, are 
denoted by the letters I, P, R, 
B&A and W, respectively
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models. For instance, ECHAM6-FESOM, GFDL CM3, 
HadGEM1.2 and MPI-ESM-LR show predictability in 
the Ross and Amundsen Seas, ECHAM6-FESOM, GFDL 
CM3 and MIROC5.2 in the Weddell Sea, GFDL CM3, 
HadGEM1.2 and MIROC5.2 in the Indian and Pacific Ocean 
sectors of the Southern Ocean and, finally, GFDL CM3 and 
MPI-ESM-LR in the Bellingshausen Sea.

The second year of simulation is also characterised by 
a loss of predictability in summer followed by significant 
values of PPP in autumn. The predictability patterns look 
similar to those of the previous year, but with slightly 
weaker PPP values in almost every location. This weaken-
ing causes the predictability to almost completely vanish in 
HadGEM1.2.

An eastward propagation of the predictability was 
reported in the CCSM3 model by Holland et al. (2013). 
A similar propagation is observed in ECHAM6-FESOM, 
GFDL CM3, HadGEM1.2 and MPI-ESM-LR. Figure 4 
shows that the eastward propagation mainly occurs in the 
Ross Sea, the Amundsen and Bellingshausen Seas and 
in the Weddell Sea. While the eastward propagation was 
also simulated in the West Pacific sector in CCSM3, only 
HadGEM1.2 simulates it. Interestingly, MIROC5.2 is the 
only model not to simulate an eastward propagation of the 
predictability. This can be understood by looking at the SIE 
mean states simulated by the models. Figure 1a shows that 
MIROC5.2 simulates the lower SIE, causing the ice edge to 
be located close to the continent (see Fig. 2). Conversely, 
the ice edge simulated by the other models is located more 
northwards. The ice edge in ECHAM6-FESOM, GFDL 
CM3, HadGEM1.2 and MPI-ESM-LR could consequently 
be more affected by the prevailing westerly winds, causing 
its predictability to shift eastwards.

What emerges from Fig. 4 is that the ice edge is poten-
tially predictable 3 years in advance in ECHAM6-FESOM, 
GFDL CM3, MPI-ESM-LR and, to a lesser extent, 
HadGEM1.2. The predictability even reaches 3.5 years in 
MIROC5.2. Nonetheless, this predictability exhibits a wide 
variation between the seasons and the regions. It appears 
that the ice edge location cannot be predicted in summer 
at most locations, while the highest PPP values are found 
in winter. In addition, the predictability of the ice edge for 
a given model is confined to the same bands of longitudes 
throughout the prediction. In the next section, we consider 
the sources of predictability that cause the above-mentioned 
behaviour.

3.2  Predictability of the ocean

The Antarctic sea ice almost entirely disappears during 
austral summer, which makes it very different to its Arctic 
counterpart. Apart from HadGEM1.2, Fig. 1a shows that 

all models simulate little sea ice in summer. This near dis-
appearance prevents sea ice from keeping a record of its 
past conditions after the summer retreat, unlike the Arctic 
sea ice, where sea ice thickness anomalies provide a source 
of predictability (e.g., Chevallier and Salas-Mélia 2012; 
Day et al. 2014b). Moreover, one can presumably expect 
the little coastal remnants of sea ice (see Figure S2 in the 
supplementary material) to be primarily affected by unpre-
dictable regional processes, making them unpredictable in 
summer. Nevertheless, these features do not prevent sea 
ice from being predictable as soon as it grows during the 
next season. The fact that the same ice edge reemergence 
is observed regardless of the start month also supports the 
weak influence of the summer sea ice state on the winter pre-
dictability. It indicates that accurately initialising sea ice in 
summer is of little importance for its winter evolution. This 
is in agreement with the study of Guemas et al. (2016), who 
studied the impact of the sea ice initialisation on Antarctic 
sea ice predictability on seasonal timescales. They found 
that initialising the winter sea ice conditions from their best 
possible observational estimate in May does not improve 
the quality of Antarctic sea ice predictions, suggesting that 
skilful SIE predictions should not be attributed to the sea 
ice memory. As the ocean was initialised in May too, this 
indicates that the ocean initial state prevails in controlling 
the evolution of the sea ice during the growing season.

As already pointed out by Holland et al. (2013) and Zunz 
et al. (2014), the ice edge variations are constrained by the 
heat anomalies stored in the ocean. However, those anoma-
lies do not remain at the ocean surface. Figure S5 of the 
supplementary material shows that the PPP applied to the 
SSTs greatly depends on the season, with highly significant 
values found in winter and low and generally non-significant 
values in summer. An examination of Fig. 2 reveals that the 
longitudes for which the SSTs are still predictable in summer 
are typical of the regions with extensive deep mixed layers 
areas, probably accounting for the persistence of the SST 
anomalies at those locations (see Fig. 6). We will discuss 
in the next sections the influence of those regions on the 
winter-to-winter reemergence of SST anomalies. Conse-
quently, we investigated the role of a thicker oceanic layer, 
close to the surface, to explain the reemergence of the ice 
edge predictability.

We computed the PPP of the ocean heat content (OHC) 
between 0 and 100 m depth. For a given longitude, the ocean 
heat content was integrated over latitudes situated between 
the coast and the northernmost ice edge location found in 
the control run of each model for each longitude. Figure 5 
shows the results for the 36 months (42 for MIROC5.2) of 
integration for the six models.

Unlike the predictability of the ice edge location, the 
OHC is potentially predictable at some longitudes for the 
whole period of simulation, including the summer months. 
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ECHAM6-FESOM, GFDL CM3, MIROC5.2 and MPI-
ESM-LR exhibit well-defined strips of high PPP values. 
Albeit less pronounced, those strips are also present in 
HadGEM1.2. Figures 5 and S5 of the supplementary mate-
rial have been compared, showing no appreciable differences 
between the positions of the strips of high PPP values for 
the OHC and the SSTs. Among the models, EC-Earth2.2 is 
the least predictable, with the OHC becoming unpredictable 
after the first five forecast lead months almost everywhere, 
except in the Weddell Sea sector. The location of the strips 
of high PPP values varies from one model to another, but 
they share a common property. They match the longitudes 
where the predictability of the ice edge location is signifi-
cant. This result highlights the role of the ocean in explain-
ing this predictability. From Fig. 5, we clearly identify lon-
gitudes for which the ocean behaves in a consistent way. This 
common behaviour shared by the ensemble members causes 
the sea ice to be predictable at those longitudes. Since the 

interactions between the interior of the ocean and the surface 
are effective during winter months (April– November) and 
nearly absent during the rest of the year, the predictability 
of the ice edge location is only significant for this period 
of the year. Note the westerly propagation of the OHC PPP 
maxima in the Ross Sea and the Bellingshausen and Amund-
sen Seas in GFDL CM3 in line with propagation of SIC PPP. 
A similar, but less pronounced, propagation is also observed 
in HadGEM1.2 in the same sectors.

4  Discussion

4.1  A mechanism of reemergence

Alexander and Deser (1995) identified such a winter-to-win-
ter recurrence of SST anomalies in the North Pacific Ocean. 
This behaviour was attributed to the persistence of ocean 

Fig. 5  Prognostic potential 
predictability (PPP) of the 
ocean heat content computed 
for the six models between 0 
and 100 m depth and between 
the coast and the ice edge, as 
defined in the text. The forecast 
lead time is from left to right, 
July 1st corresponding to the 
start month. Areas outlined in 
black refer to values that are 
significant at the 95% level. As 
in Fig. 4, a map of Antarctica 
was included in each panel to 
make the PPP results easier to 
interpret
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temperature anomalies beneath the summer mixed layer. The 
anomalies at depth reflect the temperature variations occur-
ring at the surface in winter when the mixed layer is deep. 
They interact with the surface once the mixed layer deepens 
in autumn. Later on, Hanawa and Sugimoto (2004) carried 
out a comprehensive study of the World Ocean and found 
the reemergence of winter SST anomalies in many other 
locations. More recently, Holland et al. (2013) spotted this 
mechanism in the Southern Ocean and showed that it could 
potentially contribute to skilful sea ice seasonal forecasts in 
that region. The mechanism of reemergence of the winter 
SST anomalies in polar regions is not confined to south polar 

regions, as it was also reported in the Barents Sea by Bushuk 
et al. (2017), leading to an improvement of sea ice seasonal 
forecasts in that region.

We tested this mechanism of reemergence for all the mod-
els. To do so, we computed from the control simulations the 
Pearson correlation between the September SSTs and the 
potential temperatures at depth at different lags. The high-
est ice edge PPP values found in September account for the 
choice of this reference month (see Fig. 4). Prior to the com-
putation of the correlations, the potential temperatures were 
averaged over quarters of 20◦ longitude. Each quarter was 
further limited to the northernmost ice edge location found 

Fig. 6  a–f Correlation between 
SSTs in September and poten-
tial temperatures at depth at dif-
ferent lags computed from EC-
Earth2.2, ECHAM6-FESOM 
and GFDL CM3 for the regions 
(mentioned below each figure) 
where the ice edge location 
is predictable at least 1 year 
ahead. The thick vertical black 
line marks the reference month, 
i.e. September, for the lagged 
correlations. The density-based 
(temperature-based) MLD sea-
sonal cycle is represented by the 
black dashed (dotted) line. The 
shaded region around the curves 
represents the correspond-
ing MLD standard deviations. 
g–m Same as before, but for 
HadGEM1.2, MIROC5.2 and 
MPI-ESM-LR
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for each longitude in the control run. The time series of the 
averaged temperatures were then detrended for each of the 
vertical levels and for each of the 12 calendar months. The 
correlations are illustrated in Fig. 6, along with the seasonal 
cycles of the density-based and temperature-based MLDs. 

They are respectively estimated with the fixed difference 
threshold criteria from the near-surface 0.03 kg/m3 and 
0.2 ◦ C. Dong et al. (2008) suggested that the shallower of 
the two MLDs should be employed to estimate the fully 

Fig. 6  (continued)
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homogenized mixed layer. The lag correlation analysis has 
also been extended to EC-Earth2.2 for comparison.

In September, low surface temperatures and brine rejec-
tion associated with sea ice formation cause the mixed layer 
to deepen. This deepening fosters the interactions between 
the surface and the interior of the ocean, leading to strong 
positive correlations through the mixed layer. This situation 
persists until the end of the winter when the sea ice starts 
retreating. The mixed layer then shoals, and the anomalies 

at depth are isolated from the surface during summer. When 
the mixed layer deepens again during the next winter, those 
temperature anomalies resurface and influence the ice 
advance. By this mechanism we can explain how ice edge 
variations at the end of the winter, which directly impact the 
SST, influence the ice edge location the following year. The 
study of the reemergence of the SST anomalies reveals large 
longitudinal variations of the performance of the mechanism 
within a given model. We noticed that the SST anomalies 

Fig. 7  a–e Correlation between 
SSTs in September and 
potential temperatures at depth 
at different lags computed 
from EC-Earth2.2, ECHAM6-
FESOM and GFDL CM3 for 
the regions (mentioned below 
each figure) where the ice edge 
location is predictable at least 
1 year ahead. The thick vertical 
black line marks the reference 
month, i.e., September, for the 
lagged correlations. Tempera-
ture time series are limited to 
the years for which no deep 
convection events happen. The 
criterion used to identify those 
events and the number of years 
used to perform the lagged 
correlations (in parentheses) 
are mentioned below each 
figure. The density-based MLD 
seasonal cycle is shown with 
the black dashed line, while 
the temperature-based MLD 
seasonal cycle is shown with the 
dotted line. The shaded region 
around the curves represents the 
corresponding MLD standard 
deviations. f–i Same as before, 
but for MIROC5.2 and MPI-
ESM-LR



Reemergence of Antarctic sea ice predictability and its link to deep ocean mixing in global climate…

1 3

are closely tied to the seasonal cycle of the mixed layer. 
Winter SST anomalies are more efficiently preserved below 
the surface in summer in the regions/models which show 
deep winter mixed layers. This result agrees with the study 
of Dommenget and Latif (2002) carried out at midlatitudes. 
They found that the SST variability is strongly influenced by 
the MLD variability and concluded that a better representa-
tion of the MLD in models at those latitudes is therefore 
suited to improve the seasonal-to-interannual predictability 
of the SST anomalies.

Our model intercomparison confirms the prime impor-
tance of the SST reemergence mechanism in the Antarctic 
as it is observed in the five models that show a reemergence 
of the predictability of the ice edge location. It also reveals 
that the mechanism acts almost everywhere the ice edge is 
predictable (see Fig. 6) and that the mechanism is missing at 
longitudes where the ice edge location cannot be predicted 
(not shown). However, we were not able to clearly identify 
the reemergence of the SST anomalies as the source of the 
ice edge predictability for ECHAM6-FESOM and GFDL 
CM3 in the Bellingshausen and Admunsen Seas. Interest-
ingly, those regions are characterised by an eastward shift 
of the ice edge predictability originating from the Ross Sea 

(see Fig. 4). This possibly indicates that the ice edge in those 
models is more controlled by the horizontal advection of 
ocean temperature anomalies coming from the Ross Sea 
or by the atmosphere. We also found that the September 
SST anomalies are likely to persist at the surface through-
out the summer in the sectors where deep ocean convec-
tion events occur. This is in agreement with Figure S5 of 
the supplementary material. Deep convection events are 
responsible for the persistence of those temperature anoma-
lies, due to an efficient mixing through the water column and 
an upward flow of warmer water layers to the surface. The 
influence of those events on the persistence of September 
SSTs can be appreciated by comparing Figs. 6 and 7. In 
the Bellingshausen and Admunsen Seas too, the September 
SST anomalies persist at the surface in HadGEM1.2. As 
these anomalies are efficiently retained beneath the summer 
mixed layer, the persistence at the surface possibly masked 
the reemergence mechanism. Nevertheless, the source of that 
persistence remains unclear. It cannot be accounted for by 
deep convection events, as no such event was detected in this 
sector (see Fig. 3).

In the following section, we investigate the role of 
the MLD in explaining the longitudinal variations of the 

Fig. 7  (continued)
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performance of the mechanism of reemergence presented 
here.

4.2  The role of the mixed layer

The depth at which the temperature anomalies are stored 
is typical of the Winter Water depth range. This seasonal 
subsurface layer is the remaining part of the previous winter 
mixed layer. It resides between the shallow summer mixed 
layer and the permanent pycnocline. This layer is isolated 
from the surface in summer by strong thermal and salinity 
gradients. Although this thin layer of relatively cold water 
lies on top of warm and salty waters (Circumpolar Deep 
Water), the salinity gradient is strong enough to stabilize the 
water column. The existence of this seasonal layer was for 
instance reported near the Wilkes Land coast of Antarctica 
(Wong and Riser 2011) and in the Enderby Basin (Park et al. 
1998). The information about the winter sea surface prop-
erties is expected to remain in this layer until the seasonal 
stratification is eroded. Depending on the model, the entrain-
ment of the Winter Water to the mixed layer, subsequent 
to the erosion of the stratification, occurs in April or May. 
This month coincides with the reemergence of the ice edge 
predictability discussed above (see Fig. 4).

Based on different datasets, Timlin et al. (2002) and 
Hanawa and Sugimoto (2004) found in non-polar oceans that 
a large seasonal variation of the MLD is a necessary condi-
tion for the reemergence of winter SST anomalies. Figure 2 
(right column) brings out the differences in the amplitude 
of the MLD seasonal cycle simulated by the six models. 
Among the models, EC-Earth2.2 is the one that simulates 
the smallest seasonal variations of the MLD in the regions of 
the Southern Ocean seasonally covered by sea ice. This con-
trasts with the strong seasonal variations of the MLD simu-
lated in the open ocean by ECHAM6-FESOM, GFDL CM3, 
HadGEM1.2, MIROC5.2 and MPI-ESM-LR. The amplitude 
of the MLD seasonal cycle simulated by those models in the 
open ocean can be up to five times larger than the observa-
tions (Fig. 2). This misrepresentation of the amplitude of the 
MLD seasonal cycle is due to a biased high winter MLD. 
As EC-Earth2.2 does not exhibit any reemergence of the 
predictability of the ice edge location and the predictability 
of the ice edge location in the other models is confined to 
the longitudes which hold the deepest winter mixed layers in 
the open ocean, this suggests that a sufficiently strong MLD 
seasonal cycle is required to efficiently store the winter SST 
anomalies at depth during the whole summer. As a result, 
the duration of sea ice potential predictability may be linked 
to the seasonal amplitude of MLD.

We already mentioned in Sect.  2.2.2 that the MLDs 
simulated in the Ross and Weddell Seas significantly differ 
from the observations for ECHAM6-FESOM, GFDL CM3, 
HadGEM1.2, MIROC5.2 and MPI-ESM-LR. The simulated 

winter MLD in these two places is higher than in the rest 
of the Southern Ocean. Those unrealistic deep mixed lay-
ers originate from deep convection. The regions where deep 
convection is likely to occur are illustrated in Fig. 3. We 
expect anomalous convection in the open ocean to promote 
significant September-to-September SST correlations. To 
verify this, we isolated the control run years for which no 
anomalous convection events happen and repeat the lag cor-
relation analysis for the selected years.

The convective years were removed according to the 
arbitrary criterion MLD > 500m . However, this crite-
rion was sometimes either too restrictive or not restrictive 
enough depending on the models and regions. A too restric-
tive criterion means that most of the control run years are 
disregarded. It is therefore impossible to study the impact 
of anomalous convection events. This situation arose for 
HadGEM1.2 between 60 and 80 ◦ E and MIROC5-2 between 
40 and 60 ◦ E. Conversely, a not too restrictive criterion 
implies that not many years of the control run (even none) 
are removed. In that case, we substituted it for the more con-
venient MLD > 1000m criterion. Note that this last criterion 
was still not too restrictive for GFDL CM3 between 60 and 
80 ◦ E. For the regions studied in Fig. 6, we decided for each 
region to remove a year of the control simulation if the MLD 
criterion was met for at least one of the grid points belong-
ing to that region and one of the three winter months July, 
August and September. Besides, we also removed the year 
which directly follows an anomalous convection event to 
avoid undesired subsequent deep convection effects. We also 
make sure not to perform the lagged correlations over a tem-
porally discontinuous dataset. We thus only considered the 
true consecutive years among the selected years. Results are 
shown in Fig. 7. It can be seen from this figure that the corre-
lations consistently weaken for all the models. This suggests 
that the anomalous convection events occurring in the mod-
els sustain the reemergence of winter SST anomalies. In the 
case of ECHAM6-FESOM, winter SST anomalies between 
two consecutive years become uncorrelated. This implies 
that the resulting ice edge predictability for this model only 
comes from its inability to correctly simulate mixed layers 
in the Southern Ocean. Although the anomalous convection 
events in the open ocean for EC-Earth2.2 are too sparse in 
time to efficiently promote sea ice predictability, we also 
noticed that the correlations of September-to-September 
SSTs become weak in the Weddell Sea once the anomalous 
convection years are removed. Interestingly, HadGEM1.2 is 
the only model simulating deep open ocean convection with 
no marked reemergence of the winter SST anomalies associ-
ated to it (not shown). This could possibly stems from the 
area over which the lag correlation analysis is performed. As 
can be inferred from Figs. 2 and 3, the regions which hold 
deep open ocean convection in HadGEM1.2, i.e., the quar-
ters 300–320 ◦ E and 320–340 ◦ E, also include areas where 
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the MLD never exceeds 50 m on average near the ice edge. 
We thus expect those latter regions to blur the temperature 
signal.

We also probed the evidence of an impact of deep con-
vection events on the predictability of the ice edge location 
by applying the PPP to each start date separately rather than 
to all start dates taken together. It results from this analysis 
that the ensemble predictions which coincide with one or 
multiple deep convection event(s) display higher PPP values. 
This situation was reported in ECHAM6-FESOM for the 
year 3697 and in MPI-ESM-LR for the year 2263, as shown 
in Fig. 8. Unfortunately, it was not possible to assess the 
impact of deep convection on the predictability of the ice 
edge location for GFDL CM3, HadGEM1.2 and MIROC5.2 
since those models deeply convect almost all the years of 
the control run. As a consequence, no significant PPP dif-
ferences were detected between the ensembles belonging to 
those three models. Although the predictability results of 
each individual ensemble are not statistically robust due to 
the limited number of ensemble members, Fig. 8 suggests 
that capturing deep convection events is important to achieve 
skilful sea ice prediction.

5  Summary and conclusions

In this study, we have examined the initial-value predictabil-
ity of the Antarctic sea ice on seasonal-to-interannual time-
scales. This first model intercomparison aimed at identifying 
in a systematic way the attributes of the sea ice predictability 

inherent to GCMs in the Antarctic and understand the ori-
gin of that predictability. To achieve this objective, we con-
sidered idealised ensemble experiments generated by six 
GCMs. As compared with real ensemble experiments, 
idealised experiments give a clue to the predictability that 
could be achieved when forecasting the real climate without 
being limited by initialisation shocks due to model biases 
and sparse observations. These are two major obstacles to 
the achievement of skilful real Antarctic sea ice predictions.

We assessed the benefit of a perfect knowledge of the 
initial conditions on the ice edge location using the PPP 
metric. We found that the predictability quickly falls down 
after the first lead months, except at some locations where it 
persists until the end of the year (November/December). All 
the models then exhibit a complete loss of the predictability 
in early spring at most locations. The ice retreat acts like a 
natural barrier for predicting the ice edge location in spring 
and summer. The little predictive skill found for the summer 
sea ice contrasts with the Arctic, where sea ice thickness 
anomalies provide a source of predictability (Blanchard-
Wrigglesworth et al. 2011; Chevallier and Salas-Mélia 2012; 
Day et al. 2014a). For five of the six models included in this 
study, we recovered significant PPP values around May once 
the sea ice grows. Unlike the other models, EC-Earth2.2 
does not exhibit a clear reemergence of the predictability. 
Finally, the predictability of the ice edge location behaves 
similarly in the second and third years of integration despite 
weaker PPP values. Regardless of the start month used to 
initialise the prediction, we do find a reemergence of the 
predictability of the ice edge location.

Fig. 8  Prognostic potential pre-
dictability (PPP) of the ice edge 
location as a function of longi-
tude and lead time computed for 
an ensemble which coincides 
with a deep convection event 
for ECHAM6-FESOM (year 
3697) and MPI-ESM-LR (year 
2263). The start month, July 
1st, is displayed at the bottom 
left of each figure. Areas in grey 
represent the longitudes free of 
sea ice during summer, while 
areas outlined in black refer to 
values that are significant at 
the 95 % level. As in Fig. 4, a 
map of Antarctica was included 
in each panel to make the PPP 
results easier to interpret
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The austral summer leaves the ocean with almost no sea 
ice. Therefore summer sea ice conditions cannot be invoked 
to explain the reemergence of the predictability between two 
successive winters. Instead, the ocean acts as a source of 
memory of previous sea ice conditions, with SSTs strongly 
influenced by the presence of sea ice. Due to strong mixing 
in winter, the temperature anomalies at the surface extend 
through the base of the mixed layer. As the mixed layer 
shrinks from spring, the temperature anomalies are isolated 
from the surface and are reentrained into the mixed layer 
when it deepens again the following autumn. We showed 
that the effectiveness of this mechanism relies on sufficiently 
large variations of the MLD seasonal cycle. Among the six 
models used, EC-Earth2.2 simulates the smallest amplitude 
of the MLD seasonal cycle, hence the limited potential pre-
dictability of the ice edge location found for this model. A 
similar mechanism of reemergence was found by Bushuk 
et al. (2017) in the Barents Sea. This mechanism of predict-
ability also bears some similarity to the mechanism operat-
ing in Arctic regions described by Blanchard-Wrigglesworth 
et al. (2011), where the persistence of SST anomalies in the 
melt season directly influence the ice growth next season.

The ice edge predictability reemergence does not occur 
at all longitudes, but it is rather limited to the longitudes 
which host the deepest mixed layers. We noticed that the 
predictability in the Ross and Weddell Seas outperforms the 
predictability in the other basins of the Southern Ocean. The 
high potential predictability results achieved in these two 
regions stem from the anomalous convection events occur-
ring there. It was shown that the absence of such events 
systematically reduces the September-to-September SSTs 
correlations. It even leads to no correlation for ECHAM6-
FESOM. A detailed analysis of each ensemble also pointed 
out the influence of those extreme events on the ice edge 
predictability. We found for ECHAM6-FESOM and MPI-
ESM-LR two ensembles whose start dates coincide with 
at least one deep convection event. The computation of the 
associated PPP revealed higher predictive skill at the longi-
tudes where it occurred compared with the other ensembles. 
Accordingly, caution must be exercised in interpreting the 
magnitude of the skill using a multi-ensemble approach in 
order to evaluate the potential predictability of the sea ice. 
As the predictability is inflated by occasional deep convec-
tion events, incorrectly sampling the ocean state (through 
the ensemble start dates) could lead to an overestimation of 
the ice edge predictability. This issue raises important ques-
tions about the design of future sea ice predictability experi-
ments, and especially, how the start dates should be selected 
from the control simulation. Future ensemble experiments 
dedicated to the prediction of the Antarctic sea ice should 
address, more closely, the oceanic state dependence of the 
predictability.

It is worth emphasising that our predictability study refers 
to potential predictability, that is the predictability that we 
would get if dealing with perfectly known initial conditions 
and unbiased models. Although the mechanism described 
in this study is likely to take place in the Southern Ocean, 
there is some evidence that models would overestimate the 
predictability achievable from observations for two reasons. 
The first one is related to the mean ocean MLDs simulated 
by the models. The climatology of Pellichero et al. (2017) 
shows that the observed MLD in the marginal sea ice zone 
is consistently smaller than the one simulated by the mod-
els that experience a clear reemergence of the predictability 
of the ice edge location. The second reason relates to the 
deep convection events. They are hardly ever observed in 
the open ocean, but we expect them to play a key role in the 
reemergence of SST anomalies. For those reasons, we expect 
the comparison to observations to substantially degrade the 
potential predictability results discussed here. The prom-
ising results derived from this idealised experimental set 
up should thus be interpreted with care. Nonetheless, this 
study provides some informed perspectives on what can rea-
sonably be expected from real ensemble predictions of the 
Antarctic sea ice. A better representation of the Southern 
Ocean in climate models should be regarded as a priority if 
one wants to advance our understanding of the Antarctic sea 
ice, especially its variability, emphasising the critical need 
for a comprehensive set of ocean observations with a fully 
spatial coverage.
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