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One of the clearest manifestations of ongoing global climate 
change is the dramatic retreat and thinning of the Arctic sea-ice 
cover1. While all state-of-the-art climate models consistently 
reproduce the sign of these changes, they largely disagree 
on their magnitude1–4, the reasons for which remain conten-
tious3,5–7. As such, consensual methods to reduce uncertainty 
in projections are lacking7. Here, using the CMIP5 ensemble, 
we propose a process-oriented approach to revisit this issue. 
We show that intermodel differences in sea-ice loss and, more 
generally, in simulated sea-ice variability, can be traced to 
differences in the simulation of seasonal growth and melt.  
The way these processes are simulated is relatively indepen-
dent of the complexity of the sea-ice model used, but rather a 
strong function of the background thickness. The larger role 
played by thermodynamic processes as sea ice thins8,9 further 
suggests that the recent10 and projected11 reductions in sea-
ice thickness induce a transition of the Arctic towards a state 
with enhanced volume seasonality but reduced interannual 
volume variability and persistence, before summer ice-free 
conditions eventually occur. These results prompt modelling 
groups to focus their priorities on the reduction of sea-ice 
thickness biases.

Sea ice is a major element of the Arctic environment. It largely 
shapes the climate and dynamics of ecosystems, the life of indig-
enous populations and the rhythm of socio-economical activities in 
the high north. Nearly four decades of remote-sensing observations 
have revealed that Arctic sea ice is changing at a rapid pace. Some 
of the most spectacular indicators are the significant negative trends 
in area and thickness identified in all seasons1. Numerical general 
circulation models (GCMs) have routinely been used for decades 
to investigate the underlying mechanisms of sea-ice loss. For exam-
ple, GCMs have been instrumental in formally attributing sea-ice 
decline to human-induced activities1. However, substantial uncer-
tainty persists on the rate of sea-ice loss projected by these models1–7 
at strategic timescales for infrastructure upgrade and adaptation 
(that is, from a season to ~30 years). Research has indicated that, at 
these timescales, model error and internally generated climate vari-
ability are the dominant factors contributing to uncertainty11,12.

A prominent feature of the Arctic sea-ice cover is its pronounced 
seasonality (Fig. 1a). Interestingly, sea-ice extent trend and variabil-
ity are enhanced in summer over winter. This seasonal asymmetry 
in trend and, to a larger extent, in year-to-year variability (Fig. 1a)  
may appear surprising given that lower troposphere air tempera-
tures in the Arctic have increased at least four times as much in 

winter as in summer13. In fact, sea-ice extent variability is not 
only controlled by the atmospheric forcing, but also amplified or 
damped by internal feedbacks. The natural processes of seasonal 
growth and melt of sea ice are modulated by two types of oppos-
ing thermodynamic feedbacks that operate during distinct seasons. 
A negative anomaly of sea-ice area in late summer induces larger 
heat losses in autumn and winter from the ocean to the atmosphere 
due to enhanced outgoing long-wave radiation and turbulent heat 
fluxes14. This causes thinner snow and ice due to later freeze-up 
and hence larger heat-conduction fluxes through sea ice (assuming 
the surface temperature is unchanged), eventually leading to larger 
ice-growth rates. This implies a negative (stabilizing) feedback, 
commonly referred to as the ice thickness–ice growth feedback15. 
In spring, an initial decrease in surface albedo (due to early sea-
ice retreat, thinning, formation of melt ponds or early snow loss) 
facilitates short-wave radiation absorption by the ice and ocean, and 
causes air and ocean surface temperatures to rise. This enhances 
ice-surface and -bottom melt, and leads to a further reduction in 
albedo. This implies a positive (amplifying) feedback, commonly 
referred to as the ice-albedo feedback15,16.

A state-of-the-art GCM17 well tested in the Arctic18 offers a lon-
ger-term and more complete perspective than observations, on the 
role played by the two opposing feedbacks in the changing Arctic 
(Fig. 1b–e). As the ice thins, open-water formation increases during 
the melting season over most of the Arctic basin (positive feedback, 
Fig. 1b,c), but an increase in wintertime sea-ice production occurs 
during the next ice-growth season (negative feedback, Fig. 1d,e) 
despite larger winter air temperatures.

However, characterizing such feedbacks is not straightforward, 
as this generally requires dedicated numerical experiments in which 
the feedback studied is excluded and the model response to a per-
turbation is compared to the response with the feedback included. 
Such targeted simulations are usually not available for large multi-
model ensembles such as the Coupled Model Intercomparison 
Project, phase 5 (CMIP5, see Methods). Therefore, a comprehensive 
assessment of the two aforementioned feedbacks cannot be under-
taken in CMIP5. Instead, we estimate the efficiency at which the two 
underlying processes of sea-ice growth and melt operate in CMIP5 
models. For this purpose, we introduce two diagnostics aimed at 
investigating the thermodynamics of sea ice in climate models. 
Following an earlier study8, we introduce the ‘open-water-formation 
efficiency’ (OWFE), a diagnostic quantifying the area of open water 
formed in a control region for a unit reduction in sea-ice volume. 
We also introduce the dual diagnostic, the ‘ice-formation efficiency’ 
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(IFE), as the wintertime volume gain per unit of previous summer 
volume change. Both diagnostics are evaluated north of 80° N and 
come as one number for a given time window (see Methods).

The OWFE and IFE, diagnosed in the central Arctic and on the 
basis of seasonal relationships, are found to have a direct connection 
to the longer-term basin-wide sea-ice area and volume variability 
in the CMIP5 ensemble (Table 1). In particular, the IFE (OWFE) 
tightly controls wintertime (summertime) ice-volume (-area) 
trends (Table 1). Models that melt sea-ice area more efficiently (that 
is, those with large OWFEs) also display more negative trends in 
summer sea-ice area, probably because the same physical processes 
are at play on both timescales. These relationships also hold when 
OWFE/IFE and the sea-ice variability indices are considered over 
distinct periods. By making the connection between variability 
on short and long timescales but also between regional and basin-
wide spatial scales, the OWFE and IFE therefore offer prospects to 
identify physical drivers behind simulated Arctic sea-ice seasonal-
ity, interannual variability, persistence and trends in GCMs. These 
relationships can formally be reckoned as ‘emergent constraints’  
(that is, collective behaviours emerging from a model ensemble 
between current and future climate characteristics)19. Therefore, to 

understand the origins of spread in future sea-ice properties simu-
lated by the CMIP5 models, it is necessary to first identify the fun-
damental drivers behind the OWFE and IFE themselves.

A clear inverse relationship is identified between the efficiency of 
the two thermodynamic processes (IFE and OWFE) and the annual 
mean sea-ice volume north of 80° N (the ‘mean state’ hereinafter) in 
the CMIP5 ensemble (Fig. 2a,c; n =​ 146 runs from 44 GCMs). The 
thickness dependence of vertical sea-ice thermodynamics is a basic 
feature of sea-ice physics and the enhancement of processes as ice 
thins has already been documented in earlier studies8,9. However, it 
is unclear whether the mean state is the dominant parameter affect-
ing the strength of the thermodynamic processes in the real world 
and in GCMs. The level of sophistication of sea-ice physics in the 
models could be another important factor. It could be expected, 
for instance, that models with a subgrid-scale ice-thickness distri-
bution would resolve growth and melt processes more accurately, 
and therefore simulate IFE and OWFE differently from models with 
simpler physics. To test this hypothesis, we grouped the 44 GCMs 
into 4 categories according to their sea-ice component (very sim-
ple, simple, intermediate and complex) and found no obvious link 
between model physics on the one hand, and OWFE, IFE and the 

Table 1 | Linear correlation statistics between indices of sea-ice variability (whole Arctic domain) and the simulated processes of 
growth and melt, namely IFE and OWFE

Correlation coefficient 

IFE OWFE

Amplitude of ice-volume seasonal cycle −​0.53 (0.0001) 0.52 (0.0001)

Standard deviation of …​ …​ March sea-ice volume 0.53 (0.0001) …​ September sea-ice area 0.66 (<​10−6) 

Persistence, defined as e-folding timescale of linearly 
detrended ice-volume anomalies

0.59 (0.00001) −​0.29 (0.03)

Linear change in…​ …​ March sea-ice volume −0.33 (0.015) …​ September sea-ice area −0.45 (0.001)

A graphical view of these relationships is available in Supplementary Fig. 2. P values (one-sided test) are shown in parentheses.
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Fig. 1 | Changing seasonality of Arctic sea-ice cover. a, Seasonal cycle of daily sea-ice extent retrieved from satellite monitoring31, coloured by year (1979–
2017). The bottom grey series indicates the range (maximum–minimum) of sea-ice extent for each day of the year, after linear detrending of the data to 
remove a first-order estimate of secular trends. b,c, Average open-water seasonal formation for past (b, 1850–1880) and future (c, 2020–2050) conditions 
estimated from the CESM-LE17 forced under historical and then Representative Concentration Pathway32 (RCP) 8.5 forcings. Open-water seasonal 
formation is defined for each calendar year, and each grid cell, as the range (maximum–minimum) in sea-ice concentration for that year and that grid cell. 
d,e, Average sea-ice thickness seasonal change for the same past (d) and future (e) periods as in b,c, using the same model outputs. Sea-ice thickness 
seasonal change is defined for each calendar year and each grid cell as the range (maximum–minimum) of sea-ice thickness between 1 July and 30 June of 
the next year. The light-pink contour lines denote the 15% contour line of September sea-ice concentration averaged over the two reference periods.
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mean state on the other hand (Supplementary Fig. 1 and Methods). 
Experiments conducted with a toy one-dimensional (1D) sea-
ice–ocean-mixed-layer model reproduce the CMIP5 behaviour 
(Fig. 2b,d) and suggest that OWFE and IFE obey this fundamental 
dependence on thickness regardless of model complexity. In addi-
tion, sensitivity experiments conducted with that toy model indi-
cate that the mean state is the primary factor affecting the process 
strength, however that mean state may have been achieved. The 
fraction of variance in IFE and OWFE unexplained by the mean 
state (Fig. 2a–c) can be attributed to internal variability (that is, 
variability generated in the coupled climate system itself due to the 
numerous nonlinearities and feedbacks therein). Indeed, analyses 
using a large (n =​ 35) ensemble of historical integrations from the 
Community Earth System Model Large Ensemble (CESM-LE)17 
show that the spread in IFE and OWFE simulated within the same 
model for a given period is indeed comparable with the inter-model 
spread simulated by CMIP5 (Methods).

The striking similarities between the CMIP5 models and a toy 
model (Fig. 2), on the one hand, and the lack of obvious link between 
model complexity and process strength (Supplementary Fig. 1), on 
the other hand, all underline that the first-order thermodynamic 
behaviour of sea ice in GCMs is remarkably consistent and simple 
at the temporal and spatial scales considered here. In particular, the 
level of sophistication of a sea-ice model appears relatively unim-
portant in shaping the sea-ice mean state of that model with regard 
to other influences. It must be noted, however, that model diversity 
is relatively poor in the CMIP5 ensemble: the sea-ice components 
share very similar dynamic cores, while the main thermodynamic 

differences are from the ice thickness distribution scheme. In any 
case, understanding how atmospheric or oceanic biases affect the 
sea-ice state and a more diligent documentation on tuning meth-
ods7,20 are likely to give clear insights into the source of spread in 
current sea-ice projections. This will hopefully be the case for the 
upcoming round of inter-model comparison, CMIP6, for which the 
ad hoc diagnostics will be available21.

Our multi-model analysis predicts that growth and melt pro-
cesses are enhanced nonlinearly for models with thin ice (Fig. 2) 
and that this enhancement affects simulated Arctic sea-ice volume 
variability at longer timescales (Table 1). We can therefore expect 
that, in a model with declining mean state, sea-ice volume vari-
ability is affected through the enhanced action of growth and melt 
processes. Analyses conducted with the CESM-LE reveal that this 
dependence indeed occurs in this model (Fig. 3). According to this 
GCM and a sea-ice reanalysis22, Arctic sea-ice volume has already 
experienced its most negative trends and largest year-to-year vari-
ability. As the ice thins further, sea-ice volume will become less per-
sistent and exhibit less variability from one year to another. This 
contrasts with the projected increases in summer sea-ice area vari-
ability and predictability, both regionally and Arctic-wide23,24.

The existence of relationships between the mean state and the 
efficiency of thermodynamic processes, on the one hand, and 
between this efficiency and sea-ice area and volume variability, on 
the other hand, allows one to physically reinterpret the tight link 
that had been noticed in earlier studies between mean state, season-
ality, persistence, variability and trends9,24,25 and seen in this study 
(Fig. 3). It also has an important implication: the confidence in 
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Fig. 2 | Efficiency of growth and melt processes as a function of the mean state. a, IFE (see Methods) estimated from 44 CMIP5 models and their 
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period. Individual model realizations are plotted as dots and ensemble means as circles; the size of the circles is proportional to the number of members 
used for averaging. A full referencing of CMIP5 models is available in Supplementary Table 1. Also plotted are estimates from a sea-ice reanalysis22  
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near-term predictions or long-term projections from models with 
a biased mean state should be questioned. Indeed, linear post-pro-
cessing methods widely used in the literature11,26 appear no longer 
justified since growth and melt efficiency, and hence sea-ice area 
and volume variability, change with the mean state. For the same 
reasons, weighted linear combination of model outputs27 certainly 
has statistical value but little physical basis. On the basis of our find-
ings, sea-ice projections obtained from simulations that have Arctic 
sea-ice volume outside the observational range should be discarded 
as those simulations will not simulate future thermodynamic sea-
ice thinning correctly. Importantly, this does not mean that GCMs 
with correct mean states are necessarily trustful for the future. 
Indeed, a failure to simulate other, non-thermodynamic processes 
(for example, sea-ice dynamics) may imply unreliable projected sea-
ice loss too. In addition, the current spatial distribution of sea-ice 
thickness28 and the sensitivity of sea-ice extent to near-surface air 
temperatures29 are known critical factors driving the future evolu-
tion of the sea-ice cover.

Given the importance of the mean state for ice-volume trends 
as highlighted in this study, a natural final step would be to apply 
an observational constraint on the simulated volume projections. 
However, reliably estimating the annual mean sea-ice volume 
directly from observations is challenging, due to the short period 
for which large-scale estimates of sea-ice thickness are available 
(~15 years). In addition, sea-ice thickness estimates are highly uncer-
tain not only because of instrumental errors, but also because of 
the numerous assumptions on geophysical parameters (snow load, 
and seawater, sea-ice and snow densities) used to retrieve the actual 
thickness from the raw measurements30. Following a highly con-
servative methodology that takes these observational uncertainties  

into account (see Methods), we come to the conclusion that it is 
currently not possible to significantly reduce the spread in projected 
Arctic sea-ice volume loss (Fig. 4) due to too uncertain observations.  
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Reducing uncertainties in sea-ice area trend with the same con-
straint on sea-ice volume appears to be even more challenging, as 
future trends in sea-ice area are subject to high internal variability7. 
Thus, in line with the analyses presented in this study, the current 
main obstacle to reducing uncertainties in projected sea-ice volume 
or area trends is not the complexity of the models used, but rather 
the lack of long-term and reliable estimates of sea-ice volume that 
can be used to constrain their projections.

Methods
Methods, including statements of data availability and any asso-
ciated accession codes and references, are available at https://doi.
org/10.1038/s41558-018-0204-z.

Received: 20 December 2017; Accepted: 18 May 2018;  
Published online: 18 June 2018

References
	1.	 IPCC Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.)  

(Cambridge Univ. Press, 2013).
	2.	 Stroeve, J. et al. Trends in Arctic sea ice extent from CMIP5, CMIP3 and 

observations. Geophys. Res. Lett. 39, L16502 (2012).
	3.	 Massonnet, F. et al. Constraining projections of summer Arctic sea ice. 

Cryosphere 6, 1383–1394 (2012).
	4.	 Wang, M. & Overland, J. E. A sea ice free summer Arctic within 30 years:  

An update from CMIP5 models. Geophys. Res. Lett. 39, L1850 (2012).
	5.	 Rosenblum, E. & Eisenman, I. Sea ice trends in climate models only accurate 

in runs with biased global warming. J. Clim. 30, 6265–6278 (2017).
	6.	 Mahlstein, I. & Knutti, R. Ocean heat transport as a cause for model 

uncertainty in projected arctic warming. J. Clim. 24, 1451–1460 (2011).
	7.	 Notz, D. How well must climate models agree with observations? Phil. Trans. 

R. Soc. A 373, 2052 (2014).
	8.	 Holland, M. M., Bitz, C. M. & Tremblay, B. Future abrupt reductions in the 

summer Arctic sea ice. Geophys. Res. Lett. 33, L23503 (2006).
	9.	 Bitz, C. M. & Roe, G. H. A mechanism for the high rate of sea ice thinning 

in the Arctic Ocean. J. Clim. 17, 3623–3632 (2004).
	10.	Kwok, R. et al. Thinning and volume loss of the Arctic Ocean sea ice cover: 

2003–2008. J. Geophys. Res. 114, C07005 (2009).
	11.	Melia, N., Haines, K. & Hawkins, E. Improved Arctic sea ice thickness 

projections using bias-corrected CMIP5 simulations. Cryosphere 9,  
2237–2251 (2015).

	12.	Swart, N., Fyfe, J. C., Hawkins, E., Kay, J. E. & Jahn, A. Influence of internal 
variability on Arctic sea-ice trends. Nat. Clim. Change 5, 86–89 (2015).

	13.	Bintanja, R. & van der Linden, E. C. The changing seasonal climate in the 
Arctic. Sci. Rep. 3, 1556 (2013).

	14.	Holland, M. M., Serreze, M. C. & Stroeve, J. The sea ice mass budget of  
the Arctic and its future change as simulated by coupled climate models. 
Clim. Dynam. 34, 185 (2010).

	15.	Notz, D. & Bitz, C. M. in Sea Ice (ed. Thomas, D. N.) (John Wiley & Sons, 
Chichester, 2017).

	16.	Curry, J. A., Schramm, J. L. & Ebert, E. E. Sea ice–albedo climate feedback 
mechanism. J. Clim. 8, 240–247 (1995).

	17.	Kay, J. E. et al. The Community Earth System Model (CESM) Large Ensemble 
Project: A community resource for studying climate change in the presence of 
internal climate variability. Bull. Am. Meteorol. Soc. 96, 1333–1349 (2015).

	18.	Barnhart, K. R., Miller, C. R., Overeem, I. & Kay, J. E. Mapping the future 
expansion of Arctic open water. Nat. Clim. Change 6, 280–285 (2016).

	19.	Wenzel, S., Cox, P. M., Eyring, V. & Friedlingstein, P. Projected land 
photosynthesis constrained by changes in the seasonal cycle of atmospheric 
CO2. Nature 538, 499–501 (2016).

	20.	Hunke, E. Thickness sensitivities in the CICE sea ice model. Ocean Model. 34, 
137–149 (2010).

	21.	Notz, D. et al. Sea Ice Model Intercomparison Project (SIMIP): 
Understanding sea ice through climate-model simulations. Geosci. Model Dev. 
9, 3427–3446 (2016).

	22.	Schweiger, A., Lindsay, R., Zhang, J., Steele, M. & Stern, H. Uncertainty in 
modeled Arctic sea ice volume. J. Geophys. Res. 116, C00D06 (2011).

	23.	Cheng, W., Blanchard-Wrigglesworth, E., Bitz, C. M., Ladd, C. & Stabeno, P. 
J. Diagnostic sea ice predictability in the pan-Arctic and U.S. Arctic regional 
seas. Geophys. Res. Lett. 43, 11688–11696 (2016).

	24.	Goosse, H., Arzel, O., Bitz, C. M., de Montety, A. & Vancoppenolle, M. 
Increased variability of the Arctic summer ice extent in a warmer climate. 
Geophys. Res. Lett. 36, L23702 (2009).

	25.	Blanchard-Wrigglesworth, E. & Bitz, C. M. Characteristics of Arctic sea-ice 
thickness variability in GCMs. J. Clim. 27, 8244–8258 (2014).

	26.	Fučkar, N. S., Volpi, D., Guemas, V. & Doblas-Reyes, F. J. A posteriori 
adjustment of near-term climate predictions: Accounting for the drift 
dependence on the initial conditions. Geophys. Res. Lett. 41, 5200–5207 (2014).

	27.	Knutti, R. et al. A climate model projection weighting scheme accounting for 
performance and interdependence. Geophys. Res. Lett. 44, 1909–1918 (2017).

	28.	Stroeve, J., Barrett, A., Serreze, M. & Schweiger, A. Using records from 
submarine, aircraft and satellites to evaluate climate model simulations of 
Arctic sea ice thickness. Cryosphere 8, 1839–1854 (2014).

	29.	Zhang, X. Sensitivity of Arctic summer sea ice coverage to global warming 
forcing: toward reducing uncertainty in Arctic climate change projections. 
Tellus A 62, 220–227 (2010).

	30.	Zygmuntowksa, M., Rampal, P., Ivanova, N. & Smedsrud, L. H. Uncertainties 
in Arctic sea ice thickness and volume: new estimates and implications for 
trends. Cryosphere 8, 705–720 (2014).

	31.	Fetterer, F., Knowles, K., Meier, W., Savoie, M. & Windnagel, A. K.  
Sea Ice Index Version 2 G02135 (National Snow and Ice Data Center, 2017); 
https://doi.org/10.7265/N5736NV7

	32.	van Vuuren, D. et al. The representative concentration pathways: an overview. 
Clim. Change 109, 5–31 (2011).

	33.	Global Sea Ice Concentration Reprocessing Dataset 1978–2015 Version 1.2 
(EUMETSAT Ocean and Sea Ice Satelite Application Facility, Norwegian and 
Danish Meteorological Institutes, 2015); http://osisaf.met.no

Acknowledgements
The research leading to these results has received funding from the Belgian Fonds 
National de la Recherche Scientifique (F.R.S.-FNRS), and the European Commission’s 
Horizon 2020 projects APPLICATE (GA 727862) and PRIMAVERA (GA 641727).  
We acknowledge the World Climate Research Programme’s Working Group on Coupled 
Modelling, which is responsible for CMIP, and we thank the climate modelling groups 
(listed in the Supplementary Information) for producing and making available their 
model output. We acknowledge the CESM Large Ensemble Community Project 
and supercomputing resources provided by NSF/CISL/Yellowstone for access to the 
CESM-LE data. The authors thank C. M. Bitz and D. Notz for useful discussions, and  
F. Kauker for providing the ITRP data. The authors thank M. M. Holland and E. C. 
Hunke for the review of this manuscript.

Author contributions
F.M., M.V. and H.G. designed the science plan. All authors contributed to the design of 
the study. F.M. assembled the data and wrote the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/
s41558-018-0204-z.

Reprints and permissions information is available at www.nature.com/reprints.

Correspondence and requests for materials should be addressed to F.M.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

Nature ClImate Change | VOL 8 | JULY 2018 | 599–603 | www.nature.com/natureclimatechange 603

https://doi.org/10.1038/s41558-018-0204-z
https://doi.org/10.1038/s41558-018-0204-z
https://doi.org/10.7265/N5736NV7
http://osisaf.met.no
https://doi.org/10.1038/s41558-018-0204-z
https://doi.org/10.1038/s41558-018-0204-z
http://www.nature.com/reprints
http://www.nature.com/natureclimatechange


Letters NATure ClIMATe CHAnge

Methods
Domain of study for investigation of sea-ice thermodynamics. The goal of the 
present study is to investigate how vertical thermodynamic processes affect the 
Arctic sea-ice volume variability. The spatial domain must therefore be chosen 
appropriately to minimize the effect of sea-ice dynamics on the results. A recent 
study25 has shown that thickness variability at the local scale is largely dynamically 
driven. Conducting analyses at the model-grid-cell level is therefore inappropriate 
for measuring thermodynamic processes. In contrast, a global domain (such as the 
whole Arctic) is not desirable either, as sea-ice volume and area would be impacted 
by horizontal oceanic processes that are not in the scope of our analyses. We chose 
the oceanic cap north of 80° N as the reference domain for five reasons: the domain 
is large enough to smooth out the effect of sea-ice dynamics on the area and 
thickness budgets; it is located in the interior of the multiyear ice zone during the 
historical period (1861–2004) and therefore relatively sheltered from heat advected 
by the ocean from the south; the domain retains sea ice (even in summer) in most 
CMIP5 models until at least the mid-century, while sea ice disappears seasonally 
elsewhere; the domain is relatively well sampled in terms of observations of sea-ice 
thickness (ICESat campaign10); and sensitivity tests conducted a posteriori with a 
1D thermodynamic sea-ice–ocean model (Fig. 2b,d) reveal a remarkable similarity 
in the efficiency of processes as a function of the mean state. This is, of course, 
not sufficient to claim that the choice of the domain is appropriate, but indicates 
that the first-order thermodynamics of sea-ice models can be investigated in that 
domain with reasonable confidence.

CMIP5 simulations. Climate models. We analysed results from 44 GCMs 
participating in CMIP534, a suite of state-of-the-art climate models used as 
scientific support for, for example, the Fifth Assessment Report of the IPCC1. The 
number of 44 models corresponds to all models for which monthly mean outputs 
of sea-ice volume per unit grid-cell area (variable ‘sit’) and sea-ice concentration 
(variable ‘sic’) were available over the historical period (1861–2004). Each model 
provides from one to ten runs (‘members’) that aim at sampling the intrinsic 
internal variability of the climate system. We ran the diagnostics of the study for 
each member separately, but also presented for convenience the ensemble mean of 
those diagnostics for each model. The statistics reported, such as correlations, were 
always evaluated on the ensemble mean of diagnostics.

Sea-ice component in the models. Nearly all climate models participating in CMIP5 
have a similar sea-ice dynamical component, based on the so-called viscous–plastic 
rheology. The thermodynamic component of the models is more dependent on 
the model, with some models explicitly simulating the subgrid-scale ice-thickness 
distribution (ITD) and resolving heat conduction using multiple layers of ice  
and snow, while others assume that sea ice can be represented as a slab with 
no thermal inertia. Clustering of the 44 CMIP5 models used in this study was 
performed according to the documentation found in the literature about the  
sea-ice components of those 44 models. Four groups were defined on the basis of 
the complexity of their sea-ice component: ‘very simple’ models (those without 
any representation (explicit or implicit) of the subgrid-scale ITD); ‘simple’ models 
(those with an implicit (virtual) ITD; that is, in which conductive heat fluxes are 
corrected for the unresolved nonlinear effects of the subgrid-scale ITD on vertical 
heat conduction fluxes, but with no assumed heat capacity for sea ice (the so-called 
‘0-layer’ thermodynamics)); ‘intermediate’ models (those with either an explicit 
ITD but following the 0-layer formalism, or with a virtual ITD but multiple layers 
of ice and snow); and ‘complex’ models (those with an ITD and resolved multiple 
ice and snow layers). The correspondence between the model name and model 
complexity is given in Supplementary Table 1.

CESM-LE simulations. Due to the limited number of members available from 
CMIP5 models (maximum 10), we ran additional analyses with the CESM-LE17 
data set. This ensemble consists of n =​ 35 members integrated from 1920 to 2100 
under historical (1920–2005) and RCP8.532 (2006–2100) forcings. Similarly to 
CMIP5 models, the diagnostics were computed on monthly mean outputs of  
sea-ice thickness and concentration, on the native grid of the model. An 
overview of the ability of the CESM-LE to replicate observations is available in 
Supplementary Fig. 3 (to be compared with Fig. 1a).

Observational and reanalysis data. Daily values of Arctic sea-ice extent (Fig. 1a)  
are retrieved from the National Snow and Ice Data Center sea-ice index31. 
Observed sea-ice concentrations used for the evaluation of the IFE and OWFE 
(Fig. 2c) are retrieved from the Ocean and Sea Ice Satellite Application Facility 
archive33. Observed sea-ice thicknesses from the ICESat satellite campaign10 are 
used for the evaluation of the two diagnostics (Fig. 2a–c). Caution must be placed 
in the interpretation of the two diagnostics derived from observations, as the 
reference period used to compute them is short (2003–2008) and the products 
themselves are uncertain, particularly for sea-ice thickness. However, these 
products give a first indication on the observed diagnostics and the resulting 
model biases. A sea-ice reanalysis (PIOMAS)22 was also analysed. It consists of a 
1979–2015 integration of an ocean–sea-ice model nudged towards observed sea-ice 
concentrations and sea-surface temperatures. Although being first and foremost a 
product derived from model outputs, this reanalysis shows reasonable agreement 
with independent data22.

1D sea-ice–ocean model. A 1D thermodynamic sea-ice–ocean-mixed-layer model 
has been implemented to interpret physically the results obtained by GCMs.  
The code of that toy model is available as Supplementary Information (see the  
code availability and data availability statements). The interpretation of results 
obtained from this model should be made with caution, since this model lacks a 
number of processes and does not display spatial dimensions. The physics of the 
model is a simplified and 1D version of the thermodynamic component of the 
Louvain-la-Neuve sea ice model, LIM235. Unlike LIM2, the toy model does not 
account for the thermal inertia of the ice, nor does it simulate ice dynamics or 
snow processes.

Model. The model has four state variables: sea-ice volume per grid cell area, sea-ice 
concentration, sea-ice-surface temperature and ocean-mixed-layer temperature. 
No snow is present at the top of sea ice. At each time step, an energy budget is 
computed at the open-ocean surface, and the heat imbalance is used to warm 
or cool a constant 30-m-deep oceanic mixed layer. We recognize the limitations 
behind this assumption, as in reality mixed-layer depth exhibits seasonal 
variations36. If the updated oceanic mixed-layer temperature drops below the 
seawater freezing point (−​1.8 °C), the equivalent energy is used to grow pure sea 
ice (0 PSU) in open water (volumetric latent heat of fusion: 300.33 ×​ 106 J m−3), 
with an initial thickness of 10 cm. This newly formed ice is accreted to the 
existing ice from the previous time step. Then, an energy budget is computed 
at the top and bottom sea-ice surfaces to determine how surface and basal 
processes modify sea-ice thickness and concentration. The heat conductive flux 
through sea ice is derived from Fourier’s law assuming a constant sea-ice thermal 
conductivity (2.0344 W mK−1) and constant bottom ice temperature (−​1.8 °C). 
The conductive heat flux is boosted to account for the subgrid-scale variations 
in sea-ice thickness, assuming that it is uniformly distributed between 0 m and 
twice the mean thickness37. If the net energy balance at the sea-ice top surface is 
positive, sea-ice thickness is reduced uniformly assuming again that it is uniformly 
distributed between 0 and twice the mean value; this results in a decrease in sea-ice 
concentration. An energy budget is finally computed at the base of the ice. Here, 
a parameterized ocean-ice turbulent heat flux37 is used assuming constant sea-ice 
velocity (1 cm s−1), seawater density (1,024.458 kg m−3) and drag coefficient (0.005). 
The energy imbalance is used to grow or melt ice at the base of the existing ice floe.

Forcing. The atmospheric forcing used to drive the ice–ocean model follows the 
formulation of ref. 38 based on the tabulated data of refs 39,40. Incoming heat fluxes 
consist of a short-wave component and a ‘non-solar’ component. Sea-ice albedo 
varies throughout the year and is based on observational data. The incoming fluxes 
are perturbed to emulate the interannual evolving nature of the atmosphere.

Reference experiment. In the standard case, the model is initialized from a 
1.0-m-thick sea-ice cover occupying 50% of the grid cell. Sea-ice-surface 
temperature is set to −​10.0 °C and the oceanic mixed-layer temperature is set 
to −​1.8 °C. The time step is one day. Under these conditions, the model reaches 
its equilibrium after ~15 years (Supplementary Fig. 4). The equilibrium annual 
mean ice thickness (~3.5 m) corresponds, when integrated over the domain north 
of 80° N (surface: 3.87 ×​ 106 km2), to the volume of ~13.6 ×​ 103 km3 marked by the 
black cross in Fig. 2b–d.

Sensitivity experiments. To produce the sensitivity experiments presented in  
Fig. 2b,d, we integrated the model under various changes in parameters and 
forcings for 100 years and conducted the analyses on the last 50 years of the 
simulations. We first incremented the sea-ice thermal conductivity by 10, 20, 30, 40 
and 50%, and then decreased it by the same amounts (purple dots in Fig. 2b,d).  
Then we incremented the annual mean sea-ice albedo by 1, 2, 3, 4 and 5%, and 
decreased it by the same amounts (we kept the ice thermal conductivity at its 
reference value). These are the orange dots in Fig. 2b,d. Finally, we increased the 
annual mean value of the non-solar forcing by 1, 2, 3, 4 and 5%, and decreased it by 
the same amounts (we kept both the ice thermal conductivity and the annual mean 
sea-ice albedo at their reference values). These are the green dots in Fig. 2b,d.

The IFE and OWFE diagnostics. The evaluation of growth and melt processes 
requires as input the time series of Arctic sea-ice volume north of 80° N (for IFE) 
and sea-ice volume and area north of 80° N (for OWFE). The original time  
series of volume and area from all 44 CMIP5 models are available in 
Supplementary Figs. 5 and 6.

IFE. The evaluation of the IFE is graphically illustrated in Supplementary  
Fig. 7a,b. First, the time series of the Arctic sea-ice volume north of 80° N  
(see Domain of study for investigation of sea-ice thermodynamics section above)  
is computed. Then, for each calendar year of the time series but the last one, (1)  
the annual minimum sea-ice volume is recorded for that year (Vmin) and (2) the 
annual maximum of the next year is recorded (Vmax). The ice volume created  
(Δ​V =​ Vmax − Vmin) is then computed. Finally, a linear regression is conducted 
between Vmin (x, predictor) and Δ​V (y, predictand) over all years. The IFE is defined 
as the slope of the regression line between Δ​V and Vmin. By default, both Δ​V and 
Vmin are linearly detrended before the regression to avoid spurious relationships 
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the raw retrievals in observations of ice freeboard and draft due to instrumental 
error; there is considerable uncertainty in the deduced sea-ice thickness due to 
assumptions (for example, hydrostatic equilibrium, climatological snow load) and 
the parameters used to convert the raw measurements to sea-ice thickness (snow 
and ice density are taken as constants)30; the period for which large-scale estimates 
of sea-ice volume are available is short (~15 years) and interannual variability is 
large, meaning that time averages are subject to large sampling errors; and sea-ice 
thickness uncertainties are particularly large (or no sea-ice thickness estimates 
are available) in summer. Given all of these sources of uncertainty, it appears clear 
that reliably estimating the true annual mean sea-ice volume from observations is 
impossible nowadays, and hence applying a reliable constraint based on the annual 
mean sea-ice volume is not feasible.

As an alternative, we follow a much less constrained approach. We discard 
simulations that have a monthly mean sea-ice volume north of 80° N systematically 
higher or lower than three standard observational references: IceSat, CryoSat2  
and the ITRP data sets10,41,42 over the period of observational data availability 
(2000–2017, Supplementary Fig. 14). In other words, we disregard simulations 
for which the sea-ice volume north of 80° N for each month of each year is always 
outside the observational range. Applying this constraint on the CMIP5 ensemble 
(RCP8.5, 2005–2100), we discard 14 simulations out of 72 available. The ensemble 
mean of 2020–2050 projected ice-volume loss hardly changes after the application 
of this constraint (from −​6.85 to −​6.80 ×​ 103 km3) and the spread around these 
estimates is reduced only by about 17% (from 3.08 to 2.56 ×​ 103 km3) (Fig. 4).

Code availability. The toy model, scripts used for creating figures and  
statistics are all available through the following public Github  
repository: https://github.com/fmassonn/paper-arctic-processes  
(commit f99f975f71bf26700a075d341dda3a243356bb26).

Data availability. All of the results produced in this manuscript, including figures, 
can be reproduced bitwise. The data used in the scripts above can be retrieved from 
PANGAEA at https://doi.pangaea.de/10.1594/PANGAEA.889757. For how to use 
them, see code availability.
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between those variables due to possible secular trends. This detrending does not 
affect the conclusions of the manuscript (Supplementary Fig. 8a).

The IFE is a dimensionless number and can be interpreted as the efficiency  
of a model to recover a summer anomaly of sea-ice volume either completely 
(IFE =​ −​1.0) or not at all (IFE =​ 0.0).

Supplementary Fig. 9 illustrates the methodology for all 44 CMIP5 models.

OWFE. The diagnostic derives from from an earlier study8. The evaluation of 
the OWFE is graphically illustrated in Supplementary Fig. 7c,d. First, the time 
series of the Arctic sea-ice volume and area north of 80° N (see Domain of study 
for investigation of sea-ice thermodynamics section above) are computed. Then, 
for each calendar year of the time series, the months of annual maximum and 
minimum sea-ice volumes are recorded (tmin and tmax, respectively). The volume 
loss for that year Δ​V = V(tmin) −​ V(tmax) is estimated. The area loss for that year  
Δ​A = A(tmin) −​ A(tmax) is computed. Note that the area difference is not taken 
between the minimum and maximum of area time series, which do not necessarily 
coincide with the timings of volume extrema. Finally, a linear regression is 
conducted between Δ​V (x, predictor) and Δ​A (y, predictand) over all years.  
The OWFE is defined as the slope of the regression line between Δ​A and Δ​V.  
By default, both Δ​A and Δ​V are linearly detrended before the regression  
to avoid spurious relationships between those variables due to secular trends.  
This detrending does not affect the conclusions of the manuscript  
(Supplementary Fig. 8b).

The OWFE is a number with units per metre and measures the efficiency at 
which a model forms open water (or reduces sea-ice area) given a unit reduction in 
sea-ice thickness8.

Supplementary Fig. 10 illustrates the methodology for all 44 CMIP5 models.

Physical meaning. It is important to recognize that neither OWFE nor IFE are strict 
measures of feedbacks per se. However, since both melt and growth processes are 
central elements in the negative and positive feedback loops described above, the 
two diagnostics allow one to appreciate the first-order role played by sea ice in 
these feedbacks.

Uncertainty. Both IFE and OWFE are defined as regression coefficients.  
The standard deviation of the estimated coefficients is taken as the measure 
of uncertainty on the two diagnostics (for example, for observations and the 
reanalysis in Fig. 2). The uncertainty in annual mean sea-ice volume is  
defined as the standard deviation of annual mean sea-ice volume time series  
(for example, Figs. 2 and 3).

No sensitivity to the reference period. The analyses with CMIP5 models are 
conducted over the reference period 1955–2004, which corresponds to the last 
50 years of the historical period defined by the CMIP5 protocol34. The robustness 
of the findings was tested using different periods. Results were found to be 
insensitive to this choice (Supplementary Fig. 11). Results were also found to be 
robust with respect to the separation in time: computation of OWFE and IFE on 
an earlier period than the Arctic sea-ice variability indices yields similar results 
(Supplementary Fig. 12).

Can we reduce uncertainties in projected ice-volume trends?. Bitz and Roe 
(2004)9 first identified a robust relationship between the simulated Arctic annual 
mean sea-ice volume and the projected volume loss. In line with their conclusions 
and with the physical arguments given in our manuscript, we also reproduce 
this result (Supplementary Fig. 13). From this relationship, it would appear 
natural to subset the CMIP5 ensemble on the basis of their ability to simulate the 
observed annual mean sea-ice volume in our domain of study (that is, the x axis 
of Supplementary Fig. 15). However, there are at least four obstacles that make 
the application of this constraint difficult: there is considerable uncertainty in 
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