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Predicting the summer Arctic sea ice conditions a few months in advance has become a challenging prior-
ity. Seasonal prediction is partly an initial condition problem; therefore, a good knowledge of the initial
sea ice state is necessary to hopefully produce reliable forecasts. Most of the intrinsic memory of sea ice
lies in its thickness, but consistent and homogeneous observational networks of sea ice thickness are still
limited in space and time. To overcome this problem, we constrain the ocean–sea ice model NEMO-LIM3
with gridded sea ice concentration retrievals from satellite observations using the ensemble Kalman fil-
ter. No sea ice thickness products are assimilated. However, thanks to the multivariate formalism of the
data assimilation method used, sea ice thickness is globally updated in a consistent way whenever obser-
vations of concentration are available. We compare in this paper the skill of 27 pairs of initialized and
uninitialized seasonal Arctic sea ice hindcasts spanning 1983–2009, driven by the same atmospheric forc-
ing as to isolate the pure role of initial conditions on the prediction skill. The results exhibit the interest of
multivariate sea ice initialization for the seasonal predictions of the September ice concentration and are
particularly encouraging for hindcasts in the 2000s. In line with previous studies showing the interest of
data assimilation for sea ice thickness reconstruction, our results thus show that sea ice data assimilation
is also a promising tool for short-term prediction, and that current seasonal sea ice forecast systems could
gain predictive skill from a more realistic sea ice initialization.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Seasonal predictions of the summer Arctic sea ice cover are
regarded by many as a valuable source of information for eco-
nomic, strategic or societal reasons (AMAP, 2011). There exists sev-
eral approaches to make such predictions, including heuristic
statements, public surveys, statistical inference from empirical
relationships and dynamical forecasting. The Sea Ice Outlook initia-
tive (http://www.arcus.org/search/seaiceoutlook) provides a good
overview of the status of current efforts. However, as outlined by
Stroeve et al. (2014), the skill of the predictions is generally low
when the observed sea ice cover departs significantly from the
trend line, meaning that more research is needed before reliable
forecasts can be issued on an operational basis. Predictions
obtained from ocean–sea ice models (Zhang et al., 2008; Lindsay
et al., 2012), or from fully-coupled general circulation models
(GCMs) (Wang et al., 2012; Chevallier et al., 2013; Sigmond et al.,
2013), deserve particular interest. Indeed, in the rapidly changing
Arctic environment, past statistical relationships may not hold
(Holland and Stroeve, 2011) so that empirically-based predictions
may be of limited use for the coming years or decades.

Because of the time scales involved, seasonal Arctic sea ice pre-
diction with climate models requires a good knowledge of both ini-
tial and boundary conditions. As an example, Kauker et al. (2009)
estimated that the September 2007 sea ice area anomaly was in
part (66%) determined by past ocean and sea ice conditions in
June, the rest of the anomaly being attributed to the integrated
effects of atmospheric conditions between June and September.
Consequently, a dynamical forecast system that seeks to predict
summer Arctic sea ice conditions should, at least, rely on realistic
initial conditions. Specifically, a significant part of the predictabil-
ity of summer Arctic sea ice is associated to its initial thickness
(Holland and Stroeve, 2011; Chevallier and Salas Mélia, 2012;
Wang et al., 2012). The probability that a parcel of ice melts at
the end of summer is indeed closely related to its thickness in win-
ter (Maslanik et al., 2007; Goosse et al., 2009).

Several studies have made use of sea ice thickness products to
directly constrain sea ice models (Mathiot et al., 2012; Lindsay
et al., 2012; Lisæter et al., 2007). Most of the products (see for
example the compilation listed by Lindsay, 2013) suffer from
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undersampling in space and/or time, allowing only for corrections
of sea ice thickness in the vicinity of the measurements, and only
when these measurements are conducted. Because of their wide
coverage, satellite-based retrievals of sea ice thickness bear proba-
bly the greatest promise for initializing the sea ice cover in large-
scale models. However, satellites monitor sea ice freeboard or
draft, rather than thickness directly. To retrieve sea ice thickness,
the thickness of snow on sea ice and values for snow and ice den-
sities must be known; they are often taken climatological or con-
stant (Kwok et al., 2008; Laxon et al., 2013). Although very
valuable, satellite products for ice thickness are therefore still sub-
ject to substantial uncertainties and biases (Zygmuntowska et al.,
2014; Schweiger et al., 2011).

Alternatively, sea ice concentration products can also be used to
constrain sea ice models. Passive microwave measurements of sea
ice concentration made by satellites are not free of errors
(Eastwood et al., 2011), but benefit from a much better spatial
and temporal coverage than observations of sea ice thickness. In
this work, we propose to indirectly initialize sea ice thickness by
the assimilation of sea ice concentration, using the ensemble
Kalman filter (EnKF) in the global ocean–sea ice model NEMO-
LIM3. Contrary to simple nudging, this filter updates all ocean
and sea ice variables as long as they are related to the assimilated
variable – here, sea ice concentration. Thus, following this so-called
‘‘multivariate’’ scheme, sea ice thickness can be updated continu-
ously all over the Arctic basin, an achievement that would not have
been possible based on thickness data only given the substantial
inhomogeneities. The interest of such a multivariate approach for
sea ice thickness has already been demonstrated for both Arctic
and Antarctic sea ice (Lisæter et al., 2003; Mathiot et al., 2012;
Massonnet et al., 2013). Continuing the work initiated by these
studies, the present paper provides further perspectives for this
data assimilation method in the particular case of seasonal
prediction.

The ocean–sea ice model and the data assimilation method are
presented in Section 2. We explain why the EnKF is an appropriate
methodology when one or several variables are difficult to observe
directly, or suffer from undersampling. We extract, from the data
assimilation run, a set of 27 March initial states between 1983
and 2009, that are used as initial conditions for 27 seasonal
Arctic sea ice prediction experiments, or simply ‘‘hindcasts’’. It is
worth noting that we run these hindcasts with assimilation turned
off, but under prescribed atmosphere, as we wish to test the pure
sensitivity of sea ice to its initial conditions. We assess the skill
of these initialized seasonal hindcasts against the skill of uninitial-
ized seasonal hindcasts in Section 3. The initialized simulations are
found to be more skillful than uninitialized ones for the months of
August and September, with clearer improvements over 2000–
2009 than 1983–1999. We discuss these results in light of differ-
ences in the sea ice and ocean initial states in Section 4, with a
focus on the year 2007 – the minimum sea ice extent of the time
series. We close with a conclusion in Section 5.
2. Data and methods

2.1. General model configuration

NEMO-LIM3 is a global ocean–sea ice model, consisting of the
ocean model OPA9 (Madec, 2008) coupled to the Louvain-la-
Neuve sea ice model, version 3 (LIM3, Vancoppenolle et al.,
2009). OPA9 is a finite difference, hydrostatic, primitive equation
oceanic GCM designed for climate studies. OPA9 runs on the
ORCA2 grid (�2� resolution), with mesh refinement around the
equator and at the poles. The sea ice model LIM3 explicitly resolves
the sub-grid scale sea ice thickness distribution using five ice
categories with lower bounds equal to 0, 0.63, 1.33, 2.25 and
3.84 m, respectively. The interested reader is redirected to Madec
(2008) and Vancoppenolle et al. (2009) for a detailed description
of the ocean and sea ice models.

The ocean–sea ice model is driven by atmospheric reanalyses
and climatologies. The 2-m surface air temperatures and 10-m
winds from the NCEP/NCAR reanalysis project (Kalnay et al.,
1996) force the model on a daily basis and vary from year to year.
Monthly climatologies of relative humidity (Trenberth et al., 1989),
total cloudiness (Berliand and Strokina, 1980) and precipitation
(Large and Yeager, 2004) complete the forcing. We follow the for-
mulation described in Goosse, 1997 to compute the atmosphere–
sea ice and atmosphere–ocean turbulent and radiative fluxes.
River runoff rates are taken from the climatological dataset of
Baumgartner and Reichel, 1976 combined with a mean seasonal
cycle derived from the Global Runoff Data Centre data (GRDC,
2000).

2.2. Sea ice data assimilation

The ensemble Kalman filter (EnKF) is a data assimilation
method that can be implemented to constrain geophysical systems
(Evensen, 2003). We redirect the reader to Mathiot et al. (2012)
and Massonnet et al. (2013) for a general description about how
the EnKF is implemented in our ocean–sea ice model, but we
repeat hereunder the two main characteristics of this filter.

The first key characteristic of the filter is to approximate the
forecast error covariance matrix using a finite number of model
forecasts, instead of explicitly forwarding this matrix in time. In
our case, we let 25 members evolve in time, each with a perturbed
version of the atmospheric forcing (Mathiot et al., 2012) as to gen-
erate ensemble spread. The second key characteristic of the EnKF
lies in its multivariate formalism: any single element of the
ocean–sea ice vector is updated, with a proportionality factor that
is changing with time and space, this factor being precisely pre-
scribed in the forecast error covariance matrix.

The update of the whole state vector is a non-trivial problem
when data assimilation is applied to ocean–sea ice models
(Lisæter et al., 2003). As an example, we display in Fig. 1 the
correlations between NEMO-LIM3 sea ice concentration and mean
grid cell thickness, obtained from an ensemble of 25 members each
subject to a perturbation in the atmospheric forcing. In winter (left
panel), the relationship is positive in the marginal ice zone. This is
about where the 0 �C isotherm lies in the atmospheric forcing;
members that undergo cold conditions in the marginal zones will
then grow more ice, resulting in an increase in both concentration
and thickness. In late summer however (right panel of the figure),
the correlations may become negative. When new and thin ice
forms alongside thick and multi-year ice during freeze-up, the
average thickness will be lower if the thin ice is more extensive
(Lisæter et al., 2003). The total ice concentration may also
decrease and the total thickness increase in the presence of ridging,
a process that is simulated in our model. In any case, the correla-
tions reported in Fig. 1 point towards the fact that the relationships
between ice concentration and thickness are complex since the
sign of the relationship depends on space and time.

In this study, no sea ice thickness data are assimilated. We
assimilate only satellite-retrieved observations of sea ice concen-
tration from the Ocean and Sea Ice Satellite Application Facility
(Eastwood et al., 2011). These reprocessed products include space-
and time-varying estimates of uncertainties, which are required in
the EnKF scheme. The products were interpolated on the ORCA2
grid, between January 1979 and October 2009 (they will become
operational on a real-time basis soon). The ocean–sea ice state is
updated every 5 days. In order to prevent ensemble collapse, we
perform a localized analysis (Sakov and Bertino, 2010), with a



Fig. 1. Correlation between total sea ice concentration and mean thickness in the ocean–sea ice model NEMO-LIM3, for (left) the 26th of March 2000, and (right) the 7th of
September 2000. Correlations are obtained from an ensemble of 25 forecasts, each forced with a different atmospheric forcing (the 10-m winds and 2-m air temperatures are
perturbed, see Mathiot et al. (2012) for detailed information about the way the perturbations are created). The grid cells are stippled (�) when correlations are not significant,
that is, when associated p-values lie above the 5% level obtained using a double-sided t-test with 23 degrees of freedom. The yellow dot denotes a control grid cell used to
explain, later in the text, how the EnKF analysis is conducted in the multi-category sea ice framework. Note that, in the model, the mean sea ice thickness is diagnosed from
the ice-covered part of the grid cell, thus excluding open water in the calculation.

Table 1
List of sea ice and ocean variables updated after the ensemble Kalman filter analysis.
The superscript c is used for sea ice variables defined for the five ice thickness
categories.

Sea ice model Ocean model

Concentrationc Turbulent kinetic energy
Ice volume per unit areac Temperature
Snow volume per unit areac Salinity
Brine contentc Relative vorticity
Agec Horizontal divergence
Velocity (u-component) Velocity (u-component)
Velocity (v-component) Velocity (v-component)
Basal heat flux (solar contribution) Sea surface height
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localization radius of 800 km. This value is consistent with the
recent finding by Blanchard-Wrigglesworth and Bitz (2014) that
the spatial scale for decorrelation of sea ice thickness has typical
values between 500 and 1000 km in the Arctic. Due to the finite
number of members (25) used during data assimilation, the fore-
cast error structure is not entirely captured and relationships
between assimilated and non-assimilated variables may be repre-
sented incorrectly. We are confident that the basic relationship
between ice concentration and thickness is well represented in
our ensemble (Fig. 1) but acknowledge that other variables, includ-
ing sea surface temperature (SST), sea surface salinity (SSS) or
snow thickness, may be updated not adequately after each
analysis.

This study is, to our knowledge, the first one to implement the
EnKF in a sea ice model with multiple ice thickness categories.
However, the observations of ice concentration used in the present
study are only available at the grid cell level, and not for each ice
thickness category. We perform the analysis step individually for
each sea ice and snow variable in each ice thickness category
(Table 1), except ice and snow heat contents (Mathiot et al.,
2012) that we update separately after the EnKF analysis. That is,
each variable at the sub-grid scale level is updated according to
its relationship with the total ice concentration in the model (i.e.,
the variable that is assimilated). Fig. 2 illustrates how sea ice
thickness is updated for each ice category individually given an
observation of sea ice concentration for the entire grid cell. It is
expected that the filter would be more efficient if ice concentration
was assimilated for each ice category individually. However, obser-
vational estimates of sea ice concentration per thickness category
do not exist, to our knowledge, to constrain large-scale sea ice
models.

After the statistical update of the ocean and sea ice states by the
filter, physical consistency is not guaranteed. Total ice concentra-
tion may exceed 100%, sea ice thickness in each category may be
out of the bounds prescribed in the model, or the sea surface tem-
perature may be updated below its freezing point. To handle these
pathological cases, we repeat the following ‘‘sanity check’’ after
each update by the EnKF to ensure that the system is balanced
before a new forecast cycle is started:

1. Reset the sea ice prognostic variables to zero if the analyzed
total concentration is less than zero.

2. Update the sea ice and snow heat contents in each layer of each
category proportionally to the corresponding ice and snow vol-
ume changes in the same layer and category.

3. Rebin ice categories: ice and snow areas, volumes and heat con-
tents are transferred to neighboring categories in case ice thick-
ness exceeds the bounds of the current ice category.

4. Shrink the ice: if total concentration exceeds 1, reduce the area
of each ice category proportionally to its original areal
contribution.

5. Rebin ice categories (same as 3.), as sea ice thickness may have
changed in 4.

6. Reset sea surface temperature to freezing point of seawater if
sea surface temperature is below the freezing point (the freez-
ing point of seawater in OPA9 is a function of sea surface
salinity).

Note that seawater salinity is updated during the EnKF analysis but
not corrected during the sanity check. Still, a weak restoring
towards the Levitus, 1998 sea surface salinities is applied as dis-
cussed in Mathiot et al. (2012).



Fig. 2. Update of sea ice thickness by the ensemble Kalman filter in the multi-category sea ice model LIM3. Consider the grid cell marked with a yellow dot in Fig. 1(b). The
total (sum over the five categories) sea ice concentration in this grid cell from the 25 ensemble forecasts is plotted, for each category, against sea ice thickness in the category
(red dots). The means of the forecasts are shown by red lines. The observed total sea ice concentration is denoted by the vertical green line. For each category, sea ice thickness
is updated (blue dots) for each member depending on the relationship between thickness and total concentration in the ensemble. In this example, sea ice thickness
undergoes the largest updates in category 1. Indeed, a strong negative relationship (r ¼ �0:81) prevails in this category between sea ice thickness and total concentration.
Since the model total concentration overestimates the observed one, sea ice becomes thicker in this category. The update is conducted similarly for all other variables of the
sea ice model, including ice concentration in each category. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
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2.3. Setup

In order to test the sensitivity of seasonal prediction skill to ini-
tial conditions, two sets of ocean–sea ice initial conditions were
created. The first set was obtained by running our ocean–sea ice
model between 1979 and 2009 without data assimilation
(Section 2.1). This run is labeled ’CONTROL’ in Fig. 3 and is repre-
sented by the thick, continuous red line. The other set of initial
conditions were obtained from the data assimilation experiment
described in Section 2.2. The average of the 25 analyzed members
was considered as the best estimate of the ocean–sea ice state. This
is denoted by ‘ASSIM’ in Fig. 3 and represented by the thick, con-
tinuous blue line.

A pair of retrospective seasonal predictions were then consid-
ered for each year between 1983 and 2009.1 These predictions
are represented by the thin, blue and red lines starting from thick
dots in Fig. 3. The ‘CONTROL’ seasonal hindcast of a given year starts
the 25th of February of that year (aka ‘‘March initialization’’) from
the ‘CONTROL’ ocean and sea ice restarts. The ‘INITIALIZED’ seasonal
hindcast also starts the 25th of February of that year but from the
‘ASSIM’ ocean and sea ice restarts. While the ‘CONTROL’ seasonal
hindcasts are indistinguishable from the ‘CONTROL’ run since the
atmospheric forcing and initial conditions are identical, the
‘INITIALIZED’ seasonal hindcasts will depart from the ‘ASSIM’ experi-
ment since data assimilation is no longer activated during these
hindcasts.

We remind the reader that both control and initialized ocean–
sea ice simulations are, at all times, driven by atmospheric reanaly-
ses and climatologies. We deliberately designed this setup to test,
under identical and controlled atmospheric conditions, the
sensitivity of September sea ice prediction skill to initial winter
conditions. Our task is now to evaluate the skill of these pairs of
predictions for each year between 1983 and 2009.

Our primary metric for evaluation of seasonal hindcasts quality
is the Root Mean Squared Error (RMSE) of sea ice concentration a,
at time t:

RMSEðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN

i¼1

wi aðtÞOBS
i � aðtÞMOD

i

� �2

vuut
1 We decided to exclude the years 1979–1982 from our analysis (1) to let NEMO-
LIM3 adjust to the constraint imposed by the EnKF and (2) because of a known warm
bias in the NCEP/NCAR reanalysis in the early 1980s in the Beaufort and Laptev Seas
.
where i ¼ 1; . . . ;N runs for the grid point index, and the wi’s are the
weights ensuring consistent weighting by the grid cell area. Only
the grid points that were sensed by the satellite are considered in
the calculation. Thus, the number of grid points N varies from day
to day, depending on the satellite coverage. We express ice concen-
trations in % of the grid cell area and the RMSE is therefore
expressed in %, too. The superscripts MOD and OBS refer to total
ice concentration as diagnosed daily by the sea ice model (LIM3)
and retrieved from satellite observations (Eastwood et al., 2011),
respectively. The RMSE is by definition positive, and will increase
wherever the modeled and observed sea ice concentrations differ
from each other. The RMSE as a metric is insightful because it does
not allow model forecast errors to compensate spatially, as is the
case if sea ice area or extent are used (Notz, 2013).
3. Results

We show in Fig. 4 the evolution of the average 1983–2009
RMSE in sea ice concentration for the initialized and uninitialized
seasonal hindcasts. In the first month of the hindcasts, the initial-
ized simulation is by definition subject to a lower forecast error
than the control simulation. The skill is lost within the three first
months of the hindcasts, but the memory from initial conditions
reemerges in August and September. These differences in RMSE
scores in summer are entirely due to differences in initial condi-
tions, since the atmospheric forcing is identical in each pair of sea-
sonal hindcasts. The RMSE of the initialized simulation then
returns to the control RMSE for the next winter. We diagnosed
notable reductions of RMSE even 18 months after initialization
(not shown here): in 73% of the cases, the RMSE of the initialized
run was lower than the control RMSE in September of next year
after the initialization.

The RMSE scores provided in Fig. 4, averaged over 1983–2009,
may filter out year-to-year variations. Therefore, we plot in
Fig. 5, the model forecast error in September ice concentration
obtained from the control and initialized runs, for each year
between 1983 and 2009. In line with the results of Fig. 4, the skill
of September sea ice concentration is generally higher (the RMSE is
lower) in the initialized hindcasts than in the control hindcasts.
The average reduction in RMSE is small and not significant at
two standard deviations for hindcasts spanning the period 1983–
1999 (0:8� 1:4%) but is larger and significant over 2000–2009
(3:1� 2:5%). In some years of the last decade of the simulations,
the departure from the control run is particularly marked, with



Fig. 3. Schematic description of the experimental setup of this study. (1) Two 1979–2009 ocean–sea ice simulations forced by atmospheric reanalyses and climatologies are
conducted (see the text for details about the atmospheric forcing). The first one is represented by the continuous thick, light-red line at the top: it consists in a run without
data assimilation. The second one (represented by the continuous, thick light-blue line at the bottom) consists in a run with data assimilation of sea ice concentration. (2) For
each year between 1983 and 2009, we branch two seasonal hindcasts with initial conditions taken from the two runs described in (1), driven by the same atmospheric forcing
as in (1) but with data assimilation turned off in both cases. These seasonal hindcasts are represented by the red and blue thin lines starting from a dot (�), respectively. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 4. Evolution of average (1983–2009) model forecast error in Arctic sea ice
concentration starting in March (time of the initialization) during the first year of
the simulations. The model forecast error is defined as the RMSE between simulated
and observed (Eastwood et al., 2011) concentrations. Lower values indicate higher
skill. The lower line (blue) corresponds to the RMSE of the run initialized every
month of March, while the upper (red) line is the RMSE of the control run. The
vertical orange bands highlight the month of September, that is the target month
for prediction. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

Fig. 5. (a) Average model forecast error (RMSE) of sea ice concentration in
September, from initialized runs (blue) and the control run (red). As for Fig. 4, the
RMSE is calculated against the observed concentrations of Eastwood et al., 2011.
Pay attention that the lower value of the y axis is set to 10% to ensure readability.
(For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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the RMSE dropping from 15% to 10% in 2005 and from 17% to 13%
in 2007, for example. In Section 4, we will discuss the possible rea-
sons why the reductions in RMSE could be larger in the last decade
than in the two first decades.

Fig. 6 shows the spatial distribution of the bias in September sea
ice concentration over 1983–1999 and 2000–2009, in the seasonal
hindcasts. Consistently with the RMSE time series for September
(Fig. 5), hardly no difference can be detected up to the late
1990s. The largest differences occur between 2000 and 2009. The
bias in the control simulation exhibits a dipole: overestimation
in the Beaufort and Chukchi Seas and underestimation in the
Barents and Kara Seas. The origin of such a dipole is not clear
yet, but has been identified for sea ice thickness in another sea
ice model (Hunke, 2014) driven by a modified NCEP forcing. The
negative bias in sea ice concentration is partly suppressed in the
initialized runs for the Barents and Kara Seas, suggesting a role of
initial conditions there. The bias is not significantly reduced in
the Beaufort and Chukchi Seas.

For the sake of completeness, we also present in Fig. 7 the inter-
annual evolution of September Arctic sea ice extent as simulated
by the control and initialized runs. Sea ice extent is calculated as
the sum of grid cell areas where ice concentration is larger than
15%. Therefore, it does not allow to measure whether or not the
simulated ice cover has correct spatial patterns. In fact, minor
changes are noticed between the control and initialized runs: for
example, the detrended correlation of September sea ice extent
with the observations is 0.83 in the control run, and 0.89 in the ini-
tialized run. It is also interesting to note that the extent in
September 2007 is the same in observations and in the two sim-
ulations, but that a pointwise comparison does indicate a differ-
ence between those two simulations (Fig. 5). We discuss in more
details the simulation of the 2007 Arctic sea ice minimum in the
next section.
4. Discussion

The evolution of model forecast error in the few months after
initialization (Fig. 4) highlights that sea ice initialization is ben-
eficial during the first three months following the initialization
date, but also in summer. In other words, the information from
surface conditions persists for about three months (March–May),



Fig. 6. Average modeled minus observed (Eastwood et al., 2011) sea ice concentration over the months of September for two time periods: 1983–1999 (a,b) and 2000–2009
(c,d). The left panels (a,c) correspond to the control seasonal hindcasts (no initialization from data assimilation) while the right panels (b,d) correspond to the seasonal
hindcasts initialized from data assimilation. Notice the absence of data around the North Pole, where retrievals from satellites have not been possible.
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disappears temporarily (June–July) but reemerges at the end of the
melt season (August–September). Bearing in mind that our sim-
ulations do not include an interactive atmospheric model but are
rather conducted under prescribed atmospheric conditions, we
suggest the following explanations to interpret Fig. 4:

� From March to May right after the initialization, the RMSE of
the initialized simulations gets closer to the reference RMSE.
The sea ice concentrations are nearly identical in both sim-
ulations because they approach 100% wherever the prescribed
2-m air temperatures are below the seawater freezing point.
That is, in our setup, sea ice concentration is highly constrained
by the imposed atmospheric forcing when surface temperatures
are negative.
� In June and July, surface air temperatures start to rise above the
sea ice melting point. Sea ice concentration decreases first in the
marginal zones, where ice is thin. The small differences in sea
ice thickness provided by the EnKF initialization in the marginal
ice zone may delay/advance the timing of ice retreat by a few
days, but not significantly to have clear impacts on the RMSE
in spring.
� In August and September, the whole Arctic basin is experiencing

positive surface air temperatures. In a study using NEMO-LIM3,
Goosse et al. (2009) related the probability that an ice parcel
melts completely in late summer to its average thickness in
April. Below 1.24 m (above 2.33 m), they found this probability
to be larger than 90% (lower than 10%) based on a 1979–2006
simulation. We suggest that the updates in sea ice thickness



Fig. 7. September Arctic sea ice extent, calculated as the sum of all grid cell areas
where sea ice concentration exceeds 15%. Observational data are from Comiso and
Nishio (2008). The red line is the sea ice extent from the control simulation, the blue
line shows the ensemble of September sea ice extent hindcasts obtained when
initialized in March the same year, and the black line is the observed September sea
ice extent (Comiso and Nishio, 2008). The correlations reported in the lower-left
corner of the figure have been calculated after detrending all time series. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

22 F. Massonnet et al. / Ocean Modelling 88 (2015) 16–25
provided by the EnKF can shift local ice thickness in either the
thin (<1.24 m) or thick (>2.33 m) categories, thereby changing
the fate of sea ice concentration in late summer.
� From October to February of the next year, sea ice concentration

rapidly grows to 100% wherever the surface air temperatures
are below the seawater freezing point, regardless of the sea
ice thickness.

As reported in Fig. 5, the skill of September sea ice concentra-
tion in the initialized runs departs significantly from the skill of
the control runs from the late 1990s onwards. We suspect, follow-
ing the arguments of Goosse et al. (2009), that this is intimately
related to the fact that the probability for an ice parcel to melt in
summer decreases nonlinearly with the average sea ice thickness.
In a regime of thick (>2.33 m) ice, this probability is very low, and
the updates from the assimilation do not alter significantly this
probability as the ice thickness remains anyway above this limit.
This is what happens up to the mid-1990s. In a regime of inter-
mediate thickness (less than 2.33 m but larger than 1.24 m), the
probability to melt decreases sharply, so that the updates from
the assimilation have clear impact on the presence of ice at the
end of the melt season (from the mid 1990s to 2009). Ultimately,
as sea ice might become very thin (<1.24 m) in a near future, we
expect again that the impact of assimilation will be small because
the ice will have anyway a very high probability to melt away in
September: the Arctic will be at this stage in a regime of seasonal
ice.

To illustrate the role played by the winter sea ice thickness dis-
tribution on the September sea ice concentration, we pick the
emblematic year of 2007. We choose this year because it is the
time of the absolute minimum in sea ice extent over our period
(1983–2009), but also because the spatial distribution of observed
ice concentration in September 2007 was somewhat peculiar
(Fig. 8(c), pink contour), with a long ‘‘tongue’’ of ice extending from
Greenland to Siberia. The control run, while simulating a correct
sea ice extent (Fig. 7), overestimates sea ice concentration in the
Beaufort Sea and the Baffin Bay, and underestimates it between
the North Pole and the Laptev Sea (Fig. 8(c)). The initialized run
simulates a correct sea ice extent as well, but in addition shows
a more realistic spatial distribution of ice (Fig. 89f)). The ultimate
cause for the differences between the initialized and control sim-
ulations in September must lie in the ocean and/or sea ice initial
conditions, since the model was forced with the same atmospheric
data in both cases. The corresponding maps of winter sea ice
thickness (Fig. 8(a) and (d)) reveal substantial differences up to a
meter locally. It is for example straightforward to note that ice is
thicker in the initialized run at the location of the ‘‘tongue’’ six
months later, and is logically able to survive after six months.
We also examined the June 2007 model output (not shown here).
While sea ice concentrations were hardly distinguishable from
each other, differences in sea ice thickness similar to those identi-
fied in March were noticed.

Demonstrating formally that sea ice thickness is the only vari-
able that sustains memory in the system would require several
other data assimilation experiments, and is out of the scope of
the present paper. Because the ocean could be an alternative
source of memory in the system, it is still interesting to look at
the near-surface ocean temperature at the beginning of the two
seasonal hindcasts, in March 2007 (Fig. 8(b) and (e)). Below the
ice-covered part of the oceanic domain, differences up to 0.1 �C
are noticed over the top 30 m of the ocean. For example, colder
waters are found in the Barents and Kara Seas in the initialized
run, where the EnKF produces thicker ice. This is consistent with
the physics of the model: reduced heat content is required to allow
maintaining thicker sea ice at the surface. However, these differ-
ences in ocean temperature unlikely explain the persistence of
sea ice concentration six months later in the initialized run:
back-of-the-envelope calculations show that the heat content
associated to a difference of 0.1 �C in mean ocean temperature over
a depth of 30 m, corresponds to the energy required to melt �4 cm
of ice, all other things being equal. Larger temperature differences
are noted outside of the ice edge (Fig. 8(h)), up to 1� warmer in the
initialized run east of Greenland. Examination of the maps of other
years (not shown here) reveals a systematic overestimation of sea
ice concentration in the control run near the ice edge. The filter
corrects this bias for ice concentration and, again, updates tem-
peratures accordingly: it increases the temperatures where ice is
removed. Again, it is unlikely that the temperature differences
between the initialized and uninitialized runs explain the differ-
ences in September 2007 sea ice concentration since (1) colder
waters, and not warmer ones, would be expected to sustain ice
in the initialized run in the Barents and Kara Seas, and (2) the war-
mer waters east of Greenland in the initialized run propagate
southwards in the model, and not northwards (not shown here).
To sum up, we have good evidence that the differences in oceanic
temperature in March between the two runs are the sign that the
EnKF is working correctly, but unlikely explain the differences in
sea ice concentration in September.

Our setup is far from optimal and complete. By running the
ocean–sea ice simulations with prescribed atmospheric fields,
some important sea ice– and ocean–atmosphere feedbacks are
not taken into account. In addition, the NCEP/NCAR reanalyses
were themselves obtained by the assimilation of SST and sea ice
concentration. It should be further assessed how the choice of
the atmospheric reanalyses impacts the reconstruction of initial
states used for the prediction. Regarding the data assimilation
method, our ensemble is likely under-dispersive and model
updates too small. Additional initialization of the ocean surface/
3D temperatures/salinities would probably permit to also increase
the forecast skill in winter. Actually, we ran the 27 seasonal predic-
tions with sea ice initialization in September, but did not notice
any improvement in skill for March next year (not shown here).
This was to be expected, because previous studies have shown that
the area and volume of sea ice in September are poor predictors for
subsequent March sea ice area (Blanchard-Wrigglesworth et al.,
2011; Chevallier and Salas Mélia, 2012). In winter, the position of
the marginal ice zone is rather controlled by ocean heat flux con-
vergence (Bitz et al., 2005) or by atmospheric heat flow. In the
same line, we did not find re-emergence of skill in the Southern
Ocean sea ice (not shown here). Again, the additional initialization



Fig. 8. (Left column) Mean sea ice thickness in March 2007 from the control run (a), the initialized run (d), and the difference (g) = (d) � (a). (Middle column) Same, for March
2007 ocean temperature averaged vertically over the top three model vertical levels. (Right column) Same, for sea ice concentration in September 2007. The pink lines in
panels (c), (f) and (i) denote the 15% ice edge contour from observations (Comiso and Nishio, 2008). (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

F. Massonnet et al. / Ocean Modelling 88 (2015) 16–25 23
of ocean variables could, in principle, yield sea ice predictability
and hopefully prediction skill in the Southern Ocean (Holland
et al., 2013).

5. Conclusion

In the next decades, summer Arctic sea ice extent is expected to
continue on its decline (Stroeve et al., 2012; Massonnet et al.,
2012; Wang and Overland, 2012). Under reduced ice conditions,
the use of historical predictor-predictand relationships, sometimes
invoked for seasonal sea ice prediction (e.g., Tivy et al., 2007) may
be of limited use (Holland and Stroeve, 2011). Resorting to fully-
coupled models is an appealing solution, provided that (1) these
include the essential atmosphere–sea ice and ocean–sea ice feed-
backs (Wang et al., 2012), and (2) they are initialized properly.
Our results stress that the seasonal sea ice prediction skill may
depend on the mean state, since improvements are clearly larger
when ice is thinner in our setup. Such non-stationarity would be
difficult to handle without the use of a dynamical model, that is,
using a statistical model only.

In this work we have run ocean–sea ice hindcasts with pre-
scribed atmospheric forcing but with different sea ice initial
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conditions, which has permitted to isolate the added value of sea
ice initialization for summer Arctic sea ice prediction. This study
builds upon the known fact that, in a multivariate data assimilation
scheme, the model sea ice thickness can be updated even if thick-
ness is not directly assimilated into the model (Lisæter et al., 2003;
Mathiot et al., 2012; Massonnet et al., 2013). Supporting this ear-
lier finding in the context of seasonal prediction, our results have
two main implications. (1) A realistic initialization of the sea ice
cover is possible by simple assimilation of sea ice concentration,
provided that the assimilation is conducted in a consistent
multivariate framework. Initializing sea ice concentration only
(as in, e.g., Sigmond et al., 2013) may be insufficient to sustain
and transport memory from winter to summer (Tietsche et al.,
2012). (2) For identical atmospheric conditions, predictions start-
ing from initialized states provide more realistic sea ice areal dis-
tributions in summer, with notable improvements during the
2000s.

There are many sources of uncertainty that will hamper the
realization of skillful seasonal Arctic sea ice predictions in the next
years. Our results show at least that a consistent initialization of
the winter sea ice conditions is necessary to provide realistic dis-
tributions of subsequent summer sea ice cover.
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