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SUMMARY

The discretization of a diffusion equation with a strong anisotropy by a discontinuous Galerkin finite element
method is investigated. This diffusion term is implemented in the tracer equation of an ocean model, thanks
to a symmetric tensor that is composed of diapycnal and isopycnal diffusions. The strong anisotropy comes
from the difference of magnitude order between both diffusions. As the ocean model uses interior penalty
terms to ensure numerical stability, a new penalty factor is required in order to correctly deal with the
anisotropy of this diffusion. Two penalty factors from the literature are improved and established from the
coercivity property. One of them takes into account the diffusion in the direction normal to the interface
between the elements. After comparison, the latter is better because the spurious numerical diffusion is
weaker than with the penalty factor proposed in the literature. It is computed with a transformed coordinate
system in which the diffusivity tensor is diagonal, using its eigenvalue decomposition. Furthermore, this
numerical scheme is validated with the method of manufactured solutions. It is finally applied to simulate
the evolution of temperature and salinity due to turbulent processes in an idealized Arctic Ocean. Copyright
© 2014 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In ocean general circulation models, all physical processes cannot be resolved explicitly because of
insufficient spatial resolution. Hence, appropriate parameterizations are required in order to account
for those processes. Iselin [1] and Montgomery [2] suggested that the mixing of tracers by mesoscale
eddies in the stratified ocean mainly occurs along the surfaces of constant density, that is, the isopy-
cnals. It appears that another diffusion, which is called diapycnal, also occurs orthogonally to the
isopycnals, but its magnitude is much weaker. This situation creates a strong anisotropy in the diffu-
sion tensor. In 1982, Redi introduced the isopycnal diffusivity tensor as a non-linear function of the
active tracers (salinity and temperature) [3]. This operator differs fundamentally from isotropic and
homogeneous diffusion because the tensor is not defined as diagonal or constant. But, as in most
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ocean general circulation models used in climate studies, the main directions of the diffusion are not
aligned with the mesh, and this can create numerical errors.

In the present work, only the tracer equation from an ocean model is considered. Even if many
processes can influence the evolution of oceanic tracers, such as the advection or the vertical mix-
ing, we focus only on the isopycnal diffusion, which is discretized with a discontinuous Galerkin
finite element method (DGFEM) because it is developed in the framework of an unstructured grid
oceanic model, the Second-generation Louvain-la-Neuve Ice-ocean Model (SLIM‡, [4–6]). Even if
advection is not present in this study, this is an important ocean process that cannot be forgotten for
a realistic oceanic simulation. When the advection term is present, DGFEM is better adapted than
the continuous Galerkin (CG) method because the numerical dissipation is lower than in CG for an
equivalent mesh and the dispersion is optimal [7]. For the last 30 years, DGFEM has been used to
solve partial differential equations in engineering applications, but the anisotropy of these models
was much less than in the ocean [8, 9]. In a natural way, the numerical fluxes and the slope limiters
were introduced [10]. The DGFEM allows to approximate the solution on each element separetely,
and some discontinuities, called jumps, can appear at the interface of the elements [11]. For these
many reasons, SLIM has been developed with DGFEM, and as this oceanic model is employed and
improved, the DGFEM is used instead of the CG. In the framework of SLIM, interior penalty (IP)
terms are introduced to yield a compact scheme. Especially, the estimation of the penalty factor is
required to stabilize the finite element method.

In the ocean, the anisotropy is quantified, thanks to a factor �, named anisotropy factor. Its high
magnitude, which comes from the ratio between the maximum and minimum eigenvalues of the
diffusivity tensor, �M and �m, respectively, is not usual in standard engineering analysis, such as
in the composite materials or in petroleum geology [12]. The derivation of the penalty factor is
not an easy task because it influences the results. If it is too small, the numerical scheme becomes
unstable. But, if it is too large, too much numerical diffusion is introduced, and this reduces the
quality of the approximate solution. Houston et al. [13] analyzed the discretization of the advection–
diffusion equation with a discontinuous Galerkin method when the diffusivity is heterogeneous and
less anisotropic than in the ocean. As the local and small diffusivity in some parts of the domain can
influence the internal layers if there is advection, Gastaldi and Quarteroni [14], Croisille et al. [15],
and Di Pietro et al. [16] investigated the regions where the diffusion vanishes and reappears further.
The discontinuity-penalization parameter does not take into account the direction and is thus not
appropriate when the diffusivity is anisotropic.

In her book [17], Rivière has proposed a DGFEM IP method that is able to deal with moderate
anisotropic diffusion. In practical case, the mesh is usually aligned with the direction of anisotropy.
Consider the Laplace problem

@2C

@x2
C
@2C

@y2
D 0; (1)

on a uniform mesh made of squares where C is a tracer (Figure 1). Consider a change in coordinate
y0 7! hy, which leads to

@2C

@x2
C h2

@2C

@y02
D 0: (2)

An anisotropy of h2 can exactly be balanced using a mesh that is stretched by a factor h in the
direction of anisotropy. One design goal of our approach would be that a numerical solution obtained
for Equation (1) on a uniform mesh would be strictly the same as the numerical solution obtained
for Equation (2) on a mesh that is stretched by a factor h in the y direction. Rivière’s approach deals
separately with the anisotropy of the diffusion tensor and with the anisotropy of the mesh. With
the kind of anisotropy that is present in ocean modeling, penalty factors computed with Rivière’s
approach are very high. The corresponding linear systems are so ill conditioned that they cannot be
inverted. Actually, the Rivière penalty factor demonstrates its effectiveness when the anisotropy is

‡http://www.climate.be/slim/.
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Figure 1. Illustration of two meshes with their respective side lengths lx and ly .

Table I. Comparison of an approximation of the
penalty term for the Rivière, the eigenvalue, and

the oriented methods.

Rivière Eigenvalue Oriented

x ˛�1 ˛�1 1
y ˛�1 ˛ ˛�1

small and local. In this paper, we want to have a method as well accurate as the Rivière method but
practicable with complex simulations. We therefore suggest an improvement to this penalty factor
in order to reduce it while preserving the numerical stability. It will be referred to as the eigenvalue
penalty factor.

Ern [18] suggested another penalty factor. He applied a weighted average method to the diffu-
sivity tensor in the direction normal to the interface between the elements. The use of this factor
without the average method is quite intuitive. There is, to the best of our knowledge, no formal
demonstration of the use of the penalty factor suggested by Ern. In this paper, we will first prove that
this penalty factor without the weighted average, which is called here the oriented penalty factor, is
sufficient to ensure the coercivity even for strong anisotropic diffusions. The coercivity ensures that
the solution is well posed; that is, the uniqueness and continuity properties are satisfied. The latter is
defined by rotating the system to align it with the principal axes of the diffusivity tensor. Afterwards,
the more appropriate penalty factor for a strong anisotropic diffusion will be determined between
the eigenvalue penalty factor and the oriented penalty factor. That will allow to have not only the
numerical scheme stabilization but also less numerical diffusion and thus a better approximation of
the solution. If a simple example is taken where the anisotropic diffusion is defined as

� D

�
1 0

0 ˛

�
;

where ˛ is assumed to be smaller than 1, a first approximation of each penalty term can be the-
oretically computed (Table I). As expected, the Rivière penalty factor remains large whatever the
direction. The eigenvalue penalty factor is a little better, whereas the oriented penalty factor that
changes with the main axes diffusion seems the best.

The paper is organized as follows. The diffusion tensor is defined in Section 2. The DGFEM
is applied to the diffusion equation in Section 3. Section 4 presents both penalty factors discussed
here and compares them. The method of manufactured solutions (MMS) is applied in Section 5.
A physical application is suggested in Section 6. Finally, concluding remarks close the paper
in Section 7.

2. DIFFUSION EQUATION

In the framework of SLIM, the unstructured meshes are composed of several layers of triangular
prisms. As the elements are triangular at the surface, the coastlines can be represented with high
geometrical flexibility. Additionally, the mesh is structured along the vertical direction, which
preserves the natural stratification of the ocean. Each tracer concentration field C.X; t/, typically
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the temperature T or the salinity S , satisfies the following diffusion equation:

@C

@t
D r � .� � rC/; (3)

where � is the diffusivity tensor. This symmetric tensor is computed from the density �, which is
itself a function of T and S through the equation of state. The density is a three-dimensional function
implying that the dimension d D 3 and X D .x; y; ´/. Initial conditions C.X; 0/ are supposed to
be given, and no normal flux of both temperature and salinity is allowed on the boundary @� of the
domain � � Rd . The normal n is defined everywhere on the boundary of the elements. From the
density �, the slope§ Qs is obtained as follows:

Qs D Œsx; sy � D �
rh�

@�=@´
; (4)

where rh D .@x; @y/. Let us now define � D �r� and create the diapycnal unit vector:

O� D
�

k�k
D

Œsx; sy ;�1�q
s2x C s

2
y C 1

;

where k�k is the Euclidean norm. The Qs and � vectors are important because the anisotropic diffusion
in the ocean is oriented along and across the density slope. The diffusivity tensor �, which is made
up of isopycnal and diapycnal parts, can then be expressed as follows:

� D AI .ı � O� O�/C AD O� O�;

where ı is the Kronecker delta and AI and AD are the non-negative isopycnal and diapycnal diffu-
sivity coefficients, respectively [19]. Using the local density slope Qs, Redi [3] showed that the tensor
� in the .x; y; ´/ reference frame can be written as follows¶:

AI

1C kQsk2

0
B@
1C s2y C �s

2
x .� � 1/sxsy .1 � �/sx

.� � 1/sxsy 1C s2x C �s
2
y .1 � �/sy

.1 � �/sx .1 � �/sy � C kQsk2

1
CA ; (5)

where � D AD

AI
is the ratio of the diapycnal diffusivity to the isopycnal diffusivity.

3. DGFEM FORMULATION

In this study, the elements �e are prisms with vertical faces [20] and PDG1 shape functions; that is,
polynomials of degree p D 1 are chosen in each element (implying that the number of nodes in the
element is N D 6). Note that the index e refers to a specific element, whereas the index k refers
to an interface between two elements. The usual Galerkin finite element formulation of the tracer
equation is as follows: Z

�

�
@C

@t
� r � .� � rC/

�
	d� D 0;

,

Z
�

@C

@t
	d� D

Z
�

r	 � � � rCd� �

Z
@�

n � � � rC	d
;

§The tilde refers to a two-dimensional vector, whereas the underline refers to a three-dimensional vector.
¶An equality between � and its components cannot be written because the former is a tensor, that is, a mathematical
object that does not depend on any basis, while the latter is the matrix obtained by expressing the former in a particular
basis. The formal link between the tensor and its components �ij is simply � D �ijeiej where Einstein convention is
used and ei is the basis vector in direction i D ¹1; 2; 3º.
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where 	 is the shape function. The integral over the whole domain� is decomposed into the sum of
integrals over each element �e and each interface �k D �e \�e0 . The set of all element interfaces
is noted 
 D

S
k �k . The interface term is computed over each face:

X
e

Z
�e

@C

@t
	d� D

X
e

Z
�e

r	 � � � rCd� �
X
k

Z
�k

n � � � rC	d
: (6)

Instead of incorporating boundary conditions in the space, Dirichlet boundary conditions are directly
weakly imposed through the penalty factor [21]. In DGFEM, the weak formulation consists in find-
ing C such as a.C; 	/ D b.	/, where a is a bilinear form and b is a linear form. The right-hand side
term of Equation (6) is indeed the bilinear form [17], which is defined as follows:

(7)

where � is the penalty factor and ŒŒ:�� is the jump vector at the interface such that ŒŒC �� D nC
C�C�

2
,

with CC and C� being the tracer on the left-hand and right-hand sides, respectively [10]. The
term comes from the divergence theorem and the integration by parts. The IP terms, that is, the
symmetric IP term and the penalty term , stabilize the diffusion in the DGFEM. The value of
� must be chosen carefully. On the one hand, if � is not large enough, the bilinear form is not
coercive, and the approximate solution is not stable. In this case, numerical artifacts, such as spurious
oscillations, deteriorate the quality of the solution appear. On the other hand, if � is too large, the
solution exhibits too much numerical diffusion and modifies the effective value of the diffusivity
tensor. Moreover, the numerical schemes will not be efficient. For instance, a large value of � can
have a detrimental effect on the conditioning of the matrix that represents the bilinear form [22].

4. INTERIOR PENALTY FACTOR

The factor� penalizes the jump of the concentration tracer C over the edge of an element. For scalar
diffusivity, Shahbazi [22] derived a penalty factor that is a function of the dimension d , the degree
of the polynomial shape function Dp , the area of the interface A, and the volume of the element V :

� D
.Dp C 1/.Dp C d/

d

n0

2

A

V
�; (8)

where n0 is the number of neighbors of the element, that is, n0 D 5 for prisms, and � is a scalar
diffusivity. As the diffusion is represented by an anisotropic diffusivity tensor, this usual penalty
factor cannot be used directly.

In the next sections, two different ways of computing the penalty factor, which take into account
the anisotropic diffusivity, are discussed. First, Rivière [17] only used the lower and upper bounds
of the eigenvalues of the tensor. As this suggested penalty factor is too large, it is improved and
called eigenvalue penalty factor. Hence, the maximum eigenvalue is replaced in order to reduce
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the numerical diffusion, which leads thus to a better performance. But the tries with the eigenvalue
penalty factor were not convincing. Second, the proof of the oriented penalty factor, which is a
function of n � � � n, is introduced. This factor is defined by rotating the system to align it with the
principal axes of the diffusivity tensor, and a value is suggested when strong anisotropy exists in the
diffusivity tensor.

4.1. Eigenvalue penalty factor

In the case of a small anisotropic diffusivity, Rivière [17] suggested to replace the penalty factor (8)
by the penalty factor � defined with the eigenvalues of the diffusivity tensor:

� D
.Dp C 1/.Dp C d/

d

n0

2

A

V

�2M
�m

; (9)

where �m and �M are the minimum and maximum eigenvalues of the diffusivity tensor, respectively.
Even though the anisotropy in the new diffusivity tensor is considered, this penalty factor returns

excessive values whenever
�2
M

�m
is large.

It is possible to find sharper bounds for � when anisotropy is very large. The penalty factor must
be chosen so that the bilinear form a.C; 	/ is coercive; that is, there exists a positive constant c1
such that

c1kCk
2
S 6 a.C; C /;

6
X
e

Z
�e

rC � � � rCd� � 2
X
k

Z
�k

¹n � � � rC ºŒŒC ��d
;

C
X
k

Z
�k

�ŒŒC ��2d
;

(10)

where 	 has been replaced by C in Equation (7) and the norm associated to the broken Sobolev
space is kCk2S D

P
e

R
�e
krCk2d� C

P
k

R
�k
ŒŒC ��2d
 . As the aim is to ensure the coerciv-

ity, a.C; C / must be limited by something that is smaller. Using the arithmetic–geometric mean
inequality �2˛ˇ > ���1Y ˇ2 � ˛2�Y with the strictly positive scalar �Y , the equation becomes

a.C; C / >
X
e

Z
�e

rC � � � rCd� �
1

�Y

X
k

Z
�k

¹n � � � rC º2d
;

C
X
k

Z
�k

.� � �Y /ŒŒC ��
2d
;

(11)

where ˛ has been replaced by ŒŒC �� and ˇ by ¹n � � � rC º. Using the geometric law .mCCm�/2 6
2.mC/2 C 2.m�/2, the second term can be bounded as follows:

X
k

Z
�k

¹n � � � rC º2d
 6 1
2

X
k

Z
�k

 �
n �
�
� � rC

���2
C

�
n �
�
� � rC

�C�2!
d
;

where the signs .�/C and .�/� refer, respectively, to the values of the variable on the left-hand and
right-hand sides of the interface. In order to bound the diffusivity tensor, � is considered constant
on each element so that

X
k

Z
�k

¹n � � � rC º2d
 6 1
2

X
k

�
jjn � ��jj2

Z
�k

jjrC�jj2d
;

C jjn � �Cjj2
Z
�k

jjrCCjj2d


�
:

(12)
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The trace inequality [23]

8�k 2 �e

Z
�k

P 2d
 6
Z
�e

cs
Ak

Ve
P 2d�; (13)

where cs D
.OpC1/.OpCd/

d
and Op is the number of degrees of freedom of the polynomial P , is

now used. Because Op is related to the gradient of the tracer concentration, it is equal to Dp � 1,
and thus, cs D

Dp.Dp�1Cd/

d
. The inequality (12) can then be written as follows:

X
k

Z
�k

¹n � � � rC º2d
 6 cs
2

X
e

 X
k2e

Ak

Ve
jjn � �jj2

!Z
�e

jjrC jj2d�: (14)

Moreover, the first part of the inequality (10) can be bounded as follows:

Z
�e

rC � � � rCd� >
Z
�e

�mjjrC jj
2d�: (15)

Using the inequalities (14) and (15), the bilinear form can be written as follows:

a.C; C / >
X
e

 
�m �

cs

2�Y Ve

X
k2e

Akjjn � �jj
2

!Z
�e

jjrC jj2d�;

C
X
k

.� � �Y /

Z
�k

ŒŒC ��2d
:

(16)

In order to ensure the coercivity a.C; C / > c1jjC jj2S , two conditions are required:

8<
:
� � �Y D c1 > 0;

�m �
cs

2�Y Ve

X
k2e

Akjjn � �jj
2 > 0:

These conditions are satisfied if � is chosen such as follows:

� > �Y >
cs

2�mVe

X
k2e

Akjjn � �jj
2:

In order to correctly understand the mean of this new penalty factor, an idealized case is considered.
On the one hand, the mesh is supposed to be aligned with the axes, and the horizontal faces are
larger than the vertical ones. On the other hand, the vertical diffusivity is chosen smaller than the
horizontal one so that Akjjn � �jj2 is constant. Ideally, the same penalty factor must be used on both
kinds of face. For the horizontal faces, the minimum eigenvalue �m is introduced:

�H D
cs

2�mVe
n0AH�

2
m;

D
cs

2Ve
n0AH�m:

(17)

This expression reveals that this penalty factor will introduce less numerical diffusion because the

ratio
�2M
�m

disappears. Thus, it will be well adapted to the anisotropic situations. Besides, for the

vertical faces, the penalty factor is as follows:
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�V D
cs

2�mVe
n0AV �

2
M ;

which exactly corresponds to the penalty factor suggested by Rivière (Equation (9)). In this last
case, the factor will still return excessive values, which will lead to too much numerical diffusion.

4.2. Oriented penalty factor

As the factor � penalizes the jump of the concentration tracer C over the edge of an element, a
natural approach to estimate the penalty factor for an anisotropic diffusivity tensor is to consider
its normal component on both sides of the interface of the elements [18]. In order to build such a
penalizing term, the coordinate system is aligned with the principal axes of the diffusivity tensor, and
� is expressed in another reference frame �0. So that the coercivity criterion is satisfied, Equation
(11) is also used:

a.C; C / >
X
e

Z
�e

rC � � � rCd� �
1

�Y

X
k

Z
�k

¹n � � � rC º2d
;

C
X
k

Z
�k

.� � �Y /ŒŒC ��
2d
:

With the geometric law 2.mC/2 C 2.m�/2 > .mC C m�/2, the integral in the second term of the
right-hand side can be bounded as follows:

�

Z
�k

¹n � � � rC º2d
 > �
Z
�k

¹.n � � � rC/2ºd
;

and the inequality becomes

a.C; C / >
X
e

Z
�e

rC � � � rCd� �
1

�Y

X
k

Z
�k

¹.n � � � rC/2ºd
;

C
X
k

Z
�k

.� � �Y /ŒŒC ��
2d
: (18)

Because the diffusivity tensor in the first term in the right-hand side is symmetric positive definite,
it can be diagonalized as follows:Z

�e

rC � � � rCd� D

Z
�e

rC � U � �1=2 � �1=2 � U � rCd�; (19)

where the unit tensor U describes the rotation that aligns the reference frame with the eigenvectors
and � is the diagonal tensor scaled by the corresponding eigenvalues �i .i D 1; 2; 3/. The other
terms of the equation can be transformed accordingly:8̂̂

ˆ̂̂̂<
ˆ̂̂̂̂̂
:

r 0C D rC � U � �1=2;

n0 D
�1=2 � U � n

jj�1=2 � U � njj
;

J 0 D
p
�1�2�3:

Note that the symbol 0 indicates that the variable is expressed in the modified coordinate system.
With this frame change, Equation (19) can thus be expressed as follows:Z

�e

rC � � � rCd� D J 0
Z
�0e

r 0C � r 0Cd�0:
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Using the trace inequality (13) in the reference frame �0, this equation can be bounded as follows:

X
e

Z
�e

rC � � � rCd� >
X
k

J 0V 0e
csA
0
k

Z
� 0
k

.r 0C � n0/2d
 0; (20)

where V 0e is the element volume and A0
k

is the face surface in the reference frame �0. Some terms
can be expressed in the initial coordinate system:

8<
:
V 0eJ

0 D Ve;

1
Ak

R
�k
�d
 D 1

A0
k
S 0
S 0
R
� 0
k
�d
 0 with S 0 D d�

d�0
;

so that the inequality (20) becomes

X
e

Z
�e

rC � � � rCd� >
X
k

Ve

csAk

Z
�k

.r 0C � n0/2d
:

Eventually, the squared term can be rotated in the usual reference frame � so that

.r 0C � n0/2 D

 
rC � U � �1=2 �

U � �1=2 � n

jj�1=2 � U � njj

!2
;

D
.rC � � � n/2

jj�1=2 � U � njj2
;

D
.rC � � � n/2

.n � � � n/
:

With this formulation, the bilinear form is bounded as follows:

a.C; C / >
X
k

Z
�k

2

n0csAk

´
Ve
.rC � � � n/2

.n � � � n/

μ
d
;

�
1

�Y

X
k

Z
�k

°
.rC � � � n/2

±
d
 C

X
k

.� � �Y /

Z
�k

ŒŒC ��2d
;

>
X
k

Z
�k

´ 
2Ve

n0csAk

1

.n � � � n/
�
1

�Y

!
.rC � � � n/2

μ
d
;

C
X
k

.� � �Y /

Z
�k

ŒŒC ��2d
:

In order to ensure the coercivity a.C; C / > c1jjC jj2S , two conditions are required:

´
� � �Y D c1 > 0;
2Ve

n0csAk

1
.n���n/

� 1
�Y
> 0:

These conditions are satisfied if � is chosen such as

� > �Y >
Akcsn0

2Ve
n � � � n;
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and this corresponds to the oriented penalty factor. In the same way as for the eigenvalue factor,
both kinds of face and then diffusion are studied. For the large horizontal surfaces of the element,
and thus smaller diffusion, the penalty factor can be written as follows:

�H D
csn0

2

AH

Ve
�m;

which matches the eigenvalue factor for the same case (Equation (17)). For the vertical faces, the
oriented factor becomes

�V D
csn0

2

AV

Ve
�M :

In this case, the ratio
�2
M

�m
also disappears. The oriented penalty factor seems the most appropriate

because it will introduce less numerical diffusion. It will now be compared numerically with the
eigenvalue penalty factor.

4.3. Eigenvalue penalty factor versus oriented penalty factor

In this section, both penalty factors are compared in an oceanic simulation using SLIM and an
unstructured mesh. The aim of this experimentation is, on the one hand, to illustrate the effects of
the penalty factors on the numerical solution and, on the other hand, to intuitively understand their
differences. A square mesh of 100-km side is considered with 50 vertical layers on a total depth of
200 m. To compare the simulations with an analytic solution [24], the isopycnals are supposed to
be plane and equally spaced. Hence, the diapycnal vector � is homogeneous. Then, the isopycnal
tensor is constant, and an analytic solution of this boundary value problem can be found:

C h.X; t/ D

exp

 
�
X � ��1 �X

4t

!

.4
t/
3
2

q
det.�/

8t > 0;

whereAI D 1000m2/s in the tensor � of Equation (5). The analytic concentration field at t D 1 day
is used as initial condition C.X; 0/ to replace the delta Dirac function because this function cannot
be computed numerically. The tracer only undergoes isopycnal diffusion, and a diagonally implicit
Runge–Kutta semi-implicit time integration is chosen [25]. With the eigenvalue penalty factor, the
result appears smoothed on the left-hand side of the Figure 2, which is a vertical cross section
of the tracer field after 20�t of 1000 s, and no strong jump is observed. But even with the new
formulation of the penalty factor of Rivière � �

P
k2e

Akjjn � �jj
2, the eigenvalue penalty factor is

still too large and induces too much numerical diffusion. Indeed, with the anisotropy of both mesh
and diffusivity, it varies in the range of Œ2 � 104; 1010� m/s. In the case of the oriented penalty factor,

Figure 2. Vertical cross section of a Gaussian tracer field Cr .X; t D 20�t/ with a time step �t of 1000 s
when the eigenvalue (left-hand side) and oriented (right-hand side) penalty factors are used.
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Figure 3. Study of the L2 error for the eigenvalue penalty factor and the oriented one.

the value of the oriented penalty factor is much smaller than previously, that is, in the range of
Œ2�10�3; 103�m/s. Nevertheless, the numerical solution on the right-hand side of the Figure 2 reveals
large jumps. Even though the numerical solution obtained with the eigenvalue penalty factor looks
smoother, the numerical error resulting from this approach is larger than the error made using the
oriented penalty factor. Indeed, too much numerical diffusion in this scheme is maybe induced and
that could distort the solution. When both figures are compared at the same time step, Co.X; t/ has
been less diffused because it has larger values than Cr.X; t/. In order to choose the better penalty
factor, the L2 error, which is defined as kC h � Ck2L2 D

R
�.C

h.X; t1/ � C.X; t1//
2d� where t1

refers to the time evolution, is computed for each penalty factor. Figure 3 shows that the L2 error
of the oriented penalty is lower than the error of the eigenvalue penalty factor. That means that the
oriented factor, which stabilizes enough the numerical scheme, does not induce too much diffusion,
contrary to the eigenvalue penalty factor. This leads us to choose the oriented penalty factor and to
pursue the numerical analysis with this one. In large-scale oceanic models, the minimum–maximum
principle is often violated [26, 27]. Hence, the tracer concentrations can be negative, which leads
to a local undershooting of this tracer. This situation produces unphysical water masses that can
be transported and diffused in the world ocean. The monoticity could be discussed as in Mathieu
et al. (1998) [28] where undershoots/overshoots are highlighted. But, as the diffusion is strongly
anisotropic, only one property on the coercivity and the moniticity can be satisfied. Considering that
the observed undershoots in the oceanic simulations are quite small, that is, around 10�9 under zero,
the coercivity property is selected.

5. COMPARISON WITH THE METHOD OF MANUFACTURED SOLUTIONS

In order to know if the oriented penalty factor is well suited numerically, the spatial convergence
is investigated. Specifically, the MMS allows to verify the code accuracy. A source term is added
to the equation such that the analytic solution is known but non-trivial. Here, a simple anisotropic
bidimensional diffusion equation is considered:

F.C/ D �
@2C

@x2
C ˛

@2C

@y2
D 0; (21)

where the constant diffusion ˛ D 10�3 m2/s and � D 1 m2/s so that the anisotropy of the diffusion
� D 1000. First, an arbitrary manufactured solution is chosen as follows:

CM .X/ D
exp

�
�ˇ
�

h
x2

�
C y2

˛

i�
4
	
p
˛�

;

where the constant ˇ D 10�8 and the fictional time 	 D 5 s. Then, we add F.CM / D S as a source
term of Equation (21) and CM as boundary condition:
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F.C/ D S X 2 �;

C D CM X 2 @�:

By construction, the analytic solution of this problem is C D CM . The error of the numerical solu-
tion is an indicator of the quality of the numerical method and allows to estimate the penalty factors’
performance. The domain geometry is a square of 100-km side. Several meshes generated with the
GMSH software [29, 30] are considered to study the spatial convergence. They are composed of
quadrilateral elements with side lengths lx and ly linked by this relation: ly D

p
�=˛lx , so that

in the space x0 D x; y0 D
p
�=˛y, the diffusivity tensor, the solution, and the mesh are isotropic.

Next, the domain is rotated in order to slightly misalign the elements and the main diffusion axes
that stay along the coordinate axes. The rotation angle ! is taken as 0ı, 0:5ı, and 1ı because the
oceanic density slope does not exceed 0.01.

In the first phase, the spatial convergence is computed with the norm of the L2 error defined
as follows:

kC h � CMk
2
L2 D

Z
�

.C h.X/ � CM .X//
2d�:

The following penalty factors are studied:

1. Rivière : �R D cs max
�P

k2e Ak
2Ve

�
�2
M

�m
,

2. eigenvalue : �E D cs max

�P
k2e Ak jjn��jj

2

2Ve

�
1
�m

,

3. oriented : �O D cs
n0Ak

2min.Ve/
n � � � n,

Figure 4. Comparison of the norms of the L2 error when the eigenvalue, the oriented, and the Rivière
penalty factors are used for the method of manufactured solutions at the order 1 and for two rotation angles
! D 0� 1ı. In both cases, the minimum norm of the L2 error shows that the oriented penalty factor is more

appropriate, especially at coarse resolution.
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Figure 5. Comparison of the norms of the L2 error when the eigenvalue, the oriented, and the Rivière penalty
factors are used for the method of manufactured solutions without any rotation and for four orders. At the

even orders, the oriented penalty factor converges faster.

and their spatial convergence is illustrated in Figure 4 for the order p D 1 and the rotation angles
! D 0ı; 1ı. As expected, the L2 errors are weaker when there is no misalignement between the
diffusion and the mesh. At coarse resolutions, the oriented penalty factor has a smaller error than
the other factors, whereas they converge in the same way at the finest resolutions. Besides, the lines
for the Rivière and eigenvalue penalty factors cannot be distinguished.

In Figure 5, the spatial convergence is illustrated when there is no rotation angle and the orders
1 to 4 are considered. The lines for the Rivière and eigenvalue penalty factors still cannot be distin-
guished. At coarse resolution, the error when the oriented penalty factor is used is smaller for the
odd orders, whereas it is comparable with the other penalty factor for the even orders. But at fine
resolution, the error for the oriented penalty factor is lower. In all cases, there is no major difference
in the errors obtained by the different penalty factors.

However, the main reason for this investigation was not the accuracy of the solution but the
inability to solve iteratively the linear system arising from the Rivière approach. In reality, we expect
to have a well-conditioned system when the penalty factor is small. For a linear system Ax D B ,
the condition number defined as � D jjAjj � jjA�1jj allows to give a measure of the accuracy of the
system. If the matrix is symmetric, � D 	M

	m
, where �m and �M are the minimum and maximum

eigenvalues of the system matrix A, respectively. Indeed, the convergence of the iterative methods
depends on the cluster of the eigenvalues of the system. The more � is closed to 1, the more the
system is well conditioned and thus easy and faster to solve. Moreover, the square root of � gives
the number of iterations required to solve the system.

The three penalty factors have been studied at the order p D 1 and for the rotation angles ! D
0y; 0:5ı; 1ı. Table II gives the eigenvalues of the system matrix and the condition number � for
each case. When the Rivière penalty factor is used, �m cannot be found because the system cannot
converge. In order to point out this state, the symbol � has been used, and �m has been replaced by
the value computed with the oriented method because it does not vary with the method or the rotation
angle. But it decreases with the resolution. Moreover, �M is independent of the mesh resolution,
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Table II. Study of the condition number � at the order 1 for each penalty factor and three rotation angles
(! D 0ı; 0:5ı; 1ı).

! D 0ı ! D 0:5ı ! D 1ı

lx Œm� O E R O E R O E R

�m 0.0041 0.0045 � 0.0041 0.0045 � 0.0041 0.0045 �
25,000 �M 0.18 1500 52,000 0.19 1500 52,000 0.22 1500 52,000

� 44 3.4e5 1.3e7 46 3.4e5 1.3e7 53 3.4e5 1.3e7

�m 0.0011 0.0012 � 0.0011 0.0012 � 0.0011 0.0012 �
12,500 �M 0.19 1500 52,000 0.20 1500 52,000 0.22 1500 52,000

� 170 1.3e6 4.7e7 180 1.3e6 4.7e7 200 1.3e6 4.7e7

�m 0.00029 � � 0.00029 � � 0.00029 � �
6250 �M 0.19 1500 52,000 0.19 1500 52,000 0.23 1500 52,000

� 650 5.2e6 1.7e8 680 5.2e6 1.7e8 770 5.2e6 1.7e8

�m 7.4e�5 � � 7.4e�5 � � 7.4e-5 � �
3125 �M 0.19 1500 52,000 0.20 1500 52,000 0.23 1500 52,000

� 2600 2.0e7 7.0e8 2700 2.0e7 7.0e8 3100 2.0e7 7.0e8

�m 1.8e�5 � � 1.8e�5 � � 1.8e�5 � �
1562 �M 0.19 1500 52,000 0.20 1500 52,000 0.23 1500 52,000

� 1.0e4 8.3e7 2.9e9 1.1e4 8.3e7 2.9e9 1.2e4 8.3e7 2.9e9

The symbol � indicates when the value cannot be found because the system cannot converge. In this case, �m has
been replaced by the value computed with the oriented method in order to compute �.
O, oriented; R, Rivière; E, eigenvalue penalty factor.

Table III. Study of the condition number � for the order p D 1; 2; 3; 4 and the rotation angles ! D 0ı; 1ı

when the oriented penalty factor is used.

p D 1 p D 2 p D 3 p D 4

lx Œm� ! D 0ı ! D 1ı ! D 0ı ! D 1ı ! D 0ı ! D 1ı ! D 0y ! D 1ı

�m 0.0041 0.0041 0.0020 0.0019 0.0012 0.0011 0.00074 0.00074
25,000 �M 0.19 0.22 0.24 0.30 0.61 0.72 1.5 1.7

� 44 53 120 160 540 640 2000 2000

�m 0.00029 0.00029 0.00013 0.00013 7.4e�5 7.4e�5 4.7e�5 4.7e�5
6250 �M 0.19 0.23 0.24 0.30 0.62 0.73 1.5 1.7

� 650 770 1800 2300 8400 9900 3.2e4 3.7e4

and for the Rivière and eigenvalue penalty factors, it is also independent of the rotation angles. For
the oriented penalty factor, �M increases quadratically with the angle rotations.

For the orders 1 to 4 and the rotation angles ! D 0ı; 1ı, Table III gives the eigenvalues of the
system matrix and the condition number �, when the oriented penalty factor is used. As previously,
�M increases with the rotation angle, whereas �m remains the same. With the resolution, �M does
not change but �m decreases. In regard to the order, �M increases with the order and �m decreases in
such a way that � becomes larger. This is consistent because there are more nodes in an element but
the stabilization remains the same. Actually, the same properties than previously can be observed
for the other methods. Besides, the following relations can be established for each method and for
each order:

� p D 1 : �RM � 30�
E
M � 30 � 250000�

O
M ,

� p D 2 : �RM � 30�
E
M � 30 � 15000�

O
M ,

� p D 3 : �RM � 30�
E
M � 30 � 5000�

O
M ,

� p D 4 : �RM � 30�
E
M � 30 � 5�

O
M ,
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Figure 6. Comparison of the norms of the L2 error when the eigenvalue, the oriented, and the Rivière penalty
factors are used for the method of manufactured solutions at the order 1 and for larger rotation angles:

! D 10ı (top) and ! D 20ı (bottom).

where the superior index gives the method used. The relationship between the �M from the Rivière
and eigenvalue methods remains the same regardless of the order, but it becomes closer from �M
computed with the oriented method when the order increases.

In the aim of a complete numerical analysis, larger rotation angles were taken into account in
order to simulate larger anisotropies. In Figure 6, the spatial convergence at the order 1 is illustrated
for the rotation angles ! D 10ı � 20ı. For each case, the lines for the Rivière and eigenvalue
penalty factors cannot be distinguished, as previously. Unlike the small rotation angles, the differ-
ence between the norms of the L2 error for the Rivière and eigenvalue penalty factors and for the
oriented penalty factor is much larger when coarse meshes are used. Indeed, the three lines match
further and further when the rotation angle increases. For the oriented penalty factor, the conver-
gence order is reached quite fastly for ! D 100. For ! D 200, the asymptotic regime is also achieved
but with finest meshes. For larger angles, the convergence will certainly be reached, but the meshes
need to be finer, and the asymptotic regime is not really feasible for these cases. However, these
large rotation angles require finest meshes, which is not praticable for efficient simulations because
such resolution takes too much computational time.

To conclude, the oriented method has a better spatial convergence at coarse resolutions, which is
the case for the oceanic meshes and is not worse than the other methods for the finest resolutions. But
in terms of efficiency, it gives the better condition number whatever the order. The oriented penalty
factor allows to have a well-conditioned system that can be solved rapidly. Its eigenvalues for the
system matrix can always be found for all the orders, which is not the case with the Rivière and the
eigenvalue methods. The oriented penalty factor is thus the most appropriate to solve problems with
strong anisotropic diffusion.

6. PHYSICAL APPLICATION

To complete this study, a more realistic simulation is achieved on an idealized Arctic Ocean. This
area is well adapted to investigate the strongly anisotropic diffusion because the density field under-
goes high variations, which influence the isopycnals. Even if this diffusion is non-constant in the
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Figure 7. Both pictures represent a vertical cross section of a density field where each color is associated to
one density value. The isopycnal direction corresponds to the direction of isopycnals. Hence, an isopycnal
diffusivity occurs along the surfaces of constant density (left), whereas the diapycnal one takes place

orthogonally to these surfaces (right).

time and in the space and thus that no convergence study will be possible, this application allows
to highlight the importance, on the one hand, of a well-conditioned system and, on the other hand,
of less numerical diffusion that could distort the solutions. This isopycnal diffusion is a part of a
well-known process: the mesoscale eddies. Mesoscale eddies, which have length scale from 10 to
100 km, are found almost everywhere in the ocean. Their kinetic energy is much larger than that of
the time-average circulation. They are formed as a result of instabilities and are highly influenced
by the rotation of the Earth; they stir and mix the salt and other tracers, transport quantities, and
influence the density field and the general ocean circulation [31].

More than half a century ago, Iselin and Montgomery [1, 2] suggested that the mixing of tracers
by eddies in the stratified ocean occurs along the isopycnals. This is why Redi [3] introduced
the isopycnal diffusivity tensor as a non-linear function of the active tracers because the diffu-
sion operator depends on the density that, in turn, is a function of temperature and salinity [32].
McDougall [33] emphasized that the neutral directions are relevant for the diffusive fluxes of the
tracers (Figure 7). Gent et al. [34] suggested to use a special closure in ocean models to incorpo-
rate the baroclinic effects of mesoscale eddies. The available potential energy is then transformed
into eddy kinetic energy. This extra non-divergential velocity, called the Gent–McWilliams velocity,
yields some improvements in climate simulations because it relaxes the density slopes and thus
releases potential energy [35].

To observe the effects of the Gent–McWilliams velocity and isopycnal diffusion on a closed
domain, a cylindrical geometry modelling the upper central Arctic Ocean, with a 200-m depth and
a radius of 10ı of latitude, is meshed with 30 layers of prismatic elements whose horizontal char-
acteristic length is about 105 m. The temperature and salinity are initialized on this mesh using the
PHC data (Polar science center Hydrographic Climatology [36]). In order to remove the effects of
compressibility of the ocean water, the considered parcel of water is raised adiabatically from its
depth to the sea surface (p D 0) before computing the density, which in this case is called potential
density. The latter is obtained from the Jackett and McDougall [37] equation of state:

�.S; #; p/ D
P1.S; #; p/

P2.S; #; p/
;

where # is the potential temperature and P1; P2 are both polynomial functions of 12 and 13 terms,
respectively. Because the potential density field is more complex, some static instabilities can appear
during the simulation. Hence, when a parcel of water with a potential density �1 is below another
parcel of potential density �2 such that �1 < �2, the column of water is unstable. In nature, con-
vective processes quickly re-establish the static stability of the column. Because these processes
are not included into the ocean model because of the hydrostratic assumption, a convective adjuste-
ment scheme is added to counteract these undesirable effects [38]. Various techniques can be
used such as a non-penetrative convective adjustment, a turbulent closure scheme, or an enhanced
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Figure 8. (a0) Initial condition of the tracer S Œpsu�; (b0) initial condition of the tracer T ŒıC�; (c0) potential
density computed with the equation of state � D �.S; T; p/ [kg/m3]; (a1) tracer S after 520 days Œpsu�;

(b1) tracer T after 520 days ŒıC�; (c1) potential density after 520 days [kg/m3].

vertical diffusion. In this work, the latter is used in the tracer equation. It consists to enlarge
the vertical diffusivity coefficient to 1Œm2=s� when the stratification is unstable, that is, when the
Brunt–Vaïsälä frequency N 2

b
is negative [39].

The tracer equation with both advection and diffusion terms is now considered:

@C

@t
Cr � .uedC/ D

@

@´

�
�v
@C

@´

�
Cr � .�s � rC/;

where ued is the Gent–McWilliams velocity, �v the scalar vertical diffusion coefficient that can
be enhanced by the convective adjustement, and �s the diapycnal–isopycnal diffusivity tensor. The
vertical diffusivity decreases with depth from 10�3 m2/s to 10�5 m2/s over the upper 200 m. In
Figure 8, the initial states are in the left column, while the states after 520 days are in the right
column. Note that the range of each tracer at the initial time differs from the range at the final time.
As the density field is created from temperature and salinity, it is influenced by them during the
tracers evolution. But, as the domain is situated in the Arctic, and thus in a cold area, the density
is more influenced by salinity than by temperature. Both temperature and salinity are diffused in
order to align themselves along the isopycnals. But as the temperature has an initial field much more
different than the salinity, it evolves faster. Indeed, the difference between the initial and the final
maximum values is around 1.06 for temperature, whereas it is around 0.09 for salinity. As expected,
each tracer tends toward its mean value in the time. In fact, their minimum and maximum values
increase and decrease respectively, which means that the minimum–maximum principle is kept.

The Gent–McWilliams velocity obtained at the end of the simulation is shown in Figure 9. Even if
its maximum value is quite small, this velocity really has an impact on the global oceanic circulation
but in the long run. As expected, the velocity field never crosses the boundaries of the domain
(Figure 9(a)) because it is a divergence-free velocity. A small closed circulation is thus created and
can be easily observed. On the front of the middle of the domain in Figure 9(b), the velocity is
larger than in other places. This situation points out that the spatial variation of the density is strong

Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2014; 75:365–384
DOI: 10.1002/fld



382 A. PESTIAUX ET AL.

Figure 9. Gent–McWilliams velocity [m/s] (a) after 520 days at the surface and (b) its norm on the whole
domain.

at this place (Figure 8). Furthermore, this velocity tends to reduce the slope of the density field
(Figure 8(c1)) where the isopycnals have been flattened and smoothened. Finally, all these features
show that both isopycnal diffusion and Gent–McWilliams velocity significantly influence the large-
scale transport of the oceanic tracers, as discussed by Cox (1987) [26] and Gent et al. (1990,1995)
[32, 34]. We conclude thus that the discretization of this strong anisotropy diffusion with DGFEM
is well adapted for the ocean.

7. CONCLUDING REMARKS

In this paper, the discretization of a diffusion equation with a strong anisotropy by a DGFEM
is investigated. The standard discontinuous Galerkin discretization required a special attention to
the penalty factor in order to deal correctly with the jumps between the elements and ensure the
numerical stability.

Two penalty factors have been proposed and compared. On the one hand, the penalty factor
suggested by Rivière is a function of the anisotropy factor and can sometimes be very large. In
this case, the numerical solution is too much diffused and thus more approximate. This penalty
factor was then improved and renamed eigenvalue penalty factor. On the other hand, in order
to take into account the diffusion in the direction normal to the interface between the ele-
ments, the oriented penalty factor is defined by rotating the system to align it with the principal
axes of the diffusivity tensor. When strong anisotropy exists in the diffusivity tensor, a value
is suggested.

The comparison between both factors shows that the oriented factor provides less numerical
diffusion than the eigenvalue factor and still stabilizes enough the numerical scheme. Moreover, the
MMS revealed that the oriented penalty factor has a better spatial convergence at coarse resolutions,
which is the case for the oceanic meshes. But, in terms of efficiency, it gives the best condition num-
ber whatever the order and thus allows to have a well-conditioned system that can be solved rapidly.
Finally, this factor is used in a physical application (an idealized Arctic Ocean) where the density
field can undergo large variations. Hence, the main features of the isopycnal diffusion as well as
that of the Gent–McWilliams velocity are observed: the tracers tend to follow the isopycnals, and
the slopes of the density field are progressively reduced.

To the best of our knowledge, it is the first time that a strong anisotropic diffusion is discretized
with the DGFEM. The numerical simulations carried out show that the choice of the oriented penalty
factor is well adapted to this anisotropy and the conclusions from the physical application go on the
same track. Next work will be devoted to the inclusion of the isopycnal diffusion in the complete
three-dimensional oceanic model SLIM where all the governing equations are considered. In this
study, the impacts of the mesoscale eddies will be analyzed on the long run. Such a study will allow
a better understanding of these complex and still not well-known processes.
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