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The elastic–viscous–plastic (EVP) sea ice rheology has been introduced in the large-scale Louvain-la-Neu-
ve sea-Ice Model, version 2 (LIM2), and its performance has been evaluated. Centred difference versions
of the rheology have been implemented on both an Arakawa B grid and a C grid, and their performance
have been intercompared in coupled simulations with the Nucleus for European Modelling of the Ocean
(NEMO) model. Integrations with both implementations lead to fairly similar results which compare well
with observations and with previous LIM simulations. The C grid version, however, offers a number of
advantages: (a) easier ice coupling with NEMO, which is itself defined on a C grid; (b) possibility of rep-
resenting ice transport across one-cell-wide straits and passages; (c) better representation of inertial-
plastic compressive waves. For these reasons, we recommend the use of the C grid EVP formulation of
the ice dynamics in future LIM applications.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The dynamic component of most sea ice models designed for
climate studies is based on the ice momentum balance formulation
of Hibler (1979). In this model, sea ice is assumed to be a non-lin-
ear viscous–plastic (VP) material whose resistance to deformation
depends on its instantaneous state of motion and several large-
scale scalar properties, such as ice thickness and lead fractional
area. The VP formulation of Hibler (1979) has known many suc-
cesses, but it is computationally expensive and not well suited
for efficient parallel integrations. The numerical method first used
to solve the VP dynamics was a relatively slow implicit point relax-
ation method (Hibler, 1979). More efficient implicit methods have
been proposed subsequently, namely, the line relaxation method
(Zhang et al., 1997) and the alternating direction implicit method
(Zhang and Rothrock, 2000). However, the most popular
alternative for the calculation of the VP dynamics is the elastic–vis-
cous–plastic (EVP) formulation of Hunke and Dukowicz (1997).
Distinctive advantages of the EVP dynamics over the VP dynamics
is that it is much simpler to program and can be solved explicitly in
time, thus easing parallelization.

Because of the appealing numerical properties of the EVP
dynamics, a growing number of large-scale, coupled ocean-sea
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ice and atmosphere-ocean-sea ice models have adopted this for-
mulation (e.g., Randall et al., 2007). Prompted by this trend, we
have incorporated the EVP rheology in the Louvain-la-Neuve sea-
Ice Model, LIM (Fichefet and Morales Maqueda, 1997; Fichefet
and Morales Maqueda, 1999). LIM is the default sea ice module
of the Nucleus for European Modelling of the Ocean (NEMO,
http://www.locean-ipsl.upmc.fr/NEMO/). LIM is also widely used
outside the NEMO project. It is the sea ice component of the global
coupled sea ice-ocean model CLIO (Goosse and Fichefet, 1999), and
has been coupled to the ocean general circulation models OPA
(Océan PArallélisé), which is the precursor of NEMO (Madec
et al., 1999), and MOM3 (Modular Ocean Model, version 3, Hof-
mann and Morales Maqueda (2006)), as well as to Earth system
models of intermediate complexity CLIMBER3a (Montoya et al.,
2005) and LOVECLIM (Driesschaert et al., 2007), and to the climate
general circulation model IPSL-CM4 (Marti et al., submitted for
publication). Simulations with the coupled OPA-LIM model have
been analyzed by Timmermann et al. (2005), and a new version
of the model including an arbitrary number of ice thickness
categories and a multi-layer halo-thermodynamic module has
been recently completed by Vancoppenolle et al. (2009).

Official releases of LIM have, until now, employed the VP
dynamics formulation, although a cavitating fluid approach was
also briefly tested by Fichefet and Morales Maqueda (1997), and
the versions of LIM coupled to MOM3 and CLIMBER3a do incorpo-
rate already implementations of the EVP dynamics. However, this
work is the first attempt to evaluate the impact of the EVP param-
eterization on LIM.

http://www.locean-ipsl.upmc.fr/NEMO/
mailto:sylvain.bouillon@uclouvain.be
http://www.sciencedirect.com/science/journal/14635003
http://www.elsevier.com/locate/ocemod
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We have tested three versions of the EVP dynamics in LIM,
namely, the most recent bilinear discretization of Hunke and
Dukowicz (2002) on an Arakawa B grid, and two simpler discret-
izations that we will describe here in full, the first of which is also
formulated on a B grid, while the second is for a C grid. We pres-
ent results of simulations with the coupled OPA-LIM model, each
employing one of the three EVP formulations that we have just
referred to. For comparison, a fourth integration was also carried
out with the original VP parameterization. Reassuringly, all three
EVP discretizations produce very similar results. However, the C
grid version is the one that has been chosen for use within the
NEMO project, as it is faster than any of the other two and affords
a more direct coupling with the ocean component of NEMO,
which is an updated version of OPA and is also discretized on a
C grid.

The article is organized as follows. Section 2 succinctly de-
scribes LIM. Section 3 discusses issues pertaining to the new dis-
cretization of the model dynamics, specially as regards the new
implementation on a C grid. Section 4 presents an intercomparison
of key results from the numerical simulations. Conclusions are pre-
sented in Section 5.
2. Model description

The version of LIM used in this study (LIM2) is described in full
detail in Timmermann et al. (2005) and references therein. There-
fore, only a brief summary of the model, with emphasis on its
dynamics, is given here.

The thermodynamic part of LIM (Fichefet and Morales
Maqueda, 1997; Fichefet and Morales Maqueda, 1999) uses a
three-layer model for the vertical heat conduction within snow
and ice. The storage of latent heat in brine pockets is taken into
account, and sea ice growth and decay rates are obtained from
the ice energy budget. Air-ice and air-ocean heat fluxes are com-
puted using empirical parameterizations described by Goosse,
231, and the ice-ocean heat flux is computed as in McPhee
(1992).

The model dynamics are based on the two-category (consoli-
dated ice plus leads) approach of Hibler (1979). This two-category
ice cover is treated as a two-dimensional compressible fluid driven
by winds and oceanic currents. Sea ice resist deformation with a
strength which increases monotonically with ice thickness and
concentration.

The conservation of linear momentum for sea ice is expressed as
in Leppäranta (2005) by

mut ¼ $ � rþ Aðsa þ swÞ �mf k� u�mg$g; ð1Þ

where m is the ice mass per unit area, u is the ice velocity, r is
the internal stress tensor, A is the ice area fraction, or concentra-
tion, sa is the wind stress, sw is the ocean stress (typically qua-
dratic), f is the Coriolis parameter, k is an upward pointing unit
vector, g is the gravity acceleration and g is the ocean surface
elevation with respect to zero sea level. Note that the momentum
advection is being ignored in (1) and that the wind and ocean
stresses are multiplied by the ice concentration as suggested by
Connolley et al. (2004).

Calculation of sea ice internal forces in LIM has customarily
been done using the VP approach of Hibler (1979), which, in prac-
tice, is a particular case of the EVP formulation of Hunke and Duko-
wicz (1997). A description of the general framework for the VP and
EVP formulations of the ice internal stresses is given in Hunke and
Dukowicz (2002) and Hunke and Lipscomb (2006). For completion,
we reproduce here the key elements of such a framework. Let us
denote r11, r22 and r12 the components of the ice internal stress
tensor, and let
r1 ¼ r11 þ r22; ð2Þ
r2 ¼ r11 � r22; ð3Þ

DD ¼
1

h1h2

@

@n1
ðh2uÞ þ @

@n2
ðh1vÞ

� �
; ð4Þ

DT ¼
1

h1h2
h2

2
@

@n1
ðu=h2Þ � h2

1
@

@n2
ðv=h1Þ

� �
; ð5Þ

DS ¼
1

h1h2
h2

1
@

@n2
ðu=h1Þ þ h2

2
@

@n1
ðv=h2Þ

� �
; ð6Þ

where DD, DT and DS are the divergence, horizontal tension and
shearing strain rates, respectively, n1 and n2 are generalized orthog-
onal coordinates, and h1 and h2 are the associated scale factors.
With these definitions, the stress tensor is given by

r1 ¼
DD

D
� 1

� �
P; ð7Þ

r2 ¼
DT

e2D
P; ð8Þ

r12 ¼
DS

2e2D
P; ð9Þ

where P is the ice compressive strength, e is the ratio of principal
axes of the elliptical yield curve (see below) and D, a measure of
the deformation rate, is given by

D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

D þ
1
e2 ðD

2
T þ D2

S Þ
r

: ð10Þ

Note that the tensor given by (7)–(9) is entirely equivalent to the
more classic Reiner–Rivlin formulation used by Hibler (1979).

This rheology links the compressive stress, r1, to the shearing

stress, rs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

2 þ 4r2
12

q
, by the following quadratic relation,

ðr1=P þ 1Þ2 þ e2ðrs=PÞ2 ¼ 1 ð11Þ

which defines an elliptical yield curve. The ice compressive strength
P is empirically related to the ice thickness per unit area, h, and ice
concentration, A, by P ¼ P�he�Cð1�AÞ, where P� and C are empirical
constants.

In (7)–(9), a regularization is needed when D goes to zero. A
simple regularization is to set a lower bound, Dmin, for D. For values
of D smaller than Dmin, sea ice behaves like a linear viscous fluid
undergoing very slow creep. As we shall see below, if the plastic
behavior of sea ice is to be accurately represented, Dmin must be
sufficiently small (say 10�9 s�1 or less). Note that Dmin is directly re-
lated to the fmax parameter used in Hibler (1979) by
fmax ¼ P=ð2DminÞ.

An alternative regularization was proposed by Hunke and Du-
kowicz (1997), and it consists in introducing time dependence
and an artificial elastic term in (7)–(9), leading to the EVP
formulation:

2Tr1;t þ r1 ¼
DD

D
� 1

� �
P; ð12Þ

2T
e2 r2;t þ r2 ¼

DT

e2D
P; ð13Þ

2T
e2 r12;t þ r12 ¼

DS

2e2D
P; ð14Þ

where T is a time scale that controls the rate of damping of elastic
waves. Note that, while (12)–(14) become (7)–(9) in the steady
state, static flow in the EVP rheology is represented by an elastic
deformation, and so imposing a minimum value of D is no longer
necessary. Hunke and Dukowicz (1997) showed that the numerical
solution of (1) in combination with (12)–(14) does indeed converge
to the VP stationary solution as long as the elastic time scale T is
several times smaller than the time scale of variation of the external
forcing.
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The components of the internal stress force are (Hunke and
Dukowicz, 2002):

2F1 ¼
1
h1

@r1

@n1
þ 1

h1h2
2

@ðh2
2r2Þ
@n1

þ 2

h2
1h2

@ðh2
1r12Þ
@n2

; ð15Þ

2F2 ¼
1
h2

@r1

@n2
� 1

h2
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@ðh2
1r2Þ
@n2

þ 2

h1h2
2

@ðh2
2r12Þ
@n1

: ð16Þ
Fig. 1. Centred difference grid showing the indexing convention utilized in the
paper.
3. Discretizations of the model dynamics

Numerical stability analyses show that explicit time integration
of the VP dynamics would be very expensive. Indeed, the critical
time step for a stable explicit VP scheme is about 1 s for a 100-km
grid, and scales as d2, where d is the horizontal resolution (Hunke
and Dukowicz, 1997). Given such a prohibitively small explicit time
step, an implicit method of integration is required. In LIM, the impli-
cit VP solver currently used closely follows the successive relaxation
method of Hibler (1979) with under-relaxation. For typical spatial
resolutions of 50–100 km, daily wind forcing variability and time
step, Dt, of half a day to a quarter of a day, a few hundred iterations
per time step are required for the relaxation scheme to converge. A
type of predictor–corrector scheme is used for the ice dynamics,
whereby, starting from a solution at time t, an intermediate solution
is first evaluated at time t þ Dt=2. The solution at time t þ Dt is then
calculated with the non-linear terms in the internal stress and ice-
ocean stress terms centred at t þ Dt=2. For time steps of between
1 day and a few hours, the solution thus obtained may be a rather
crude approximation of the real plastic flow, and the resulting stress
state is likely to lie away from the yield curve. Accuracy can be im-
proved by repeating the predictor–corrector calculation several
times, say n, with a subcycling time step Dt=n.

In contrast to the VP dynamics, the EVP dynamics can be solved
explicitly with time steps that can be few orders of magnitude lar-
ger than the maximum permissible explicit time step for the VP
formulation. In addition, this maximum time step scales linearly,
rather than quadratically, with d, although it also depends on the
time scale T (Hunke and Dukowicz, 1997; Hunke and Lipscomb,
2006). The explicit numerical solution of the EVP equations is thus
significantly less expensive than implicit methods for the VP for-
mulation. Moreover, the convergence of the calculated stress state
toward the elliptic yield curve is relatively fast because all the non-
linear terms in (1) are reevaluated every time step. The EVP
scheme is also easy to parallelize, and gives a higher speedup factor
(measured as the ratio between wall clock serial time and wall
clock parallel time) than parallel implementations of the VP meth-
od (Hunke and Zhang, 1999).

3.1. B grid discretization

We have introduced three discretizations of the EVP dynamics
in LIM. The first discretization is the one formulated by Hunke
and Dukowicz (2002). These authors use a sophisticated varia-
tional method to calculate the internal stress force in discrete gen-
eralized orthogonal curvilinear coordinates. Formally working on a
B grid, and using bilinear approximations for the ice velocities over
a given grid cell, the components of the strain rate and internal
stress tensors are computed at the corners of each grid cell, thus
requiring four computations per tensor component per grid cell.
As Hunke and Dukowicz (2002) emphasize, this approach greatly
helps to mitigate checkerboard mode solutions that are frequently
generated on the B grid.

The discretization of Hunke and Dukowicz (2002) is computa-
tionally expensive because it requires four calculations of each
component of the strain rate and internal stress tensors per grid
cell. As an alternative, we have also implemented in LIM a naïve,
centred difference discretization on the B grid. This second discret-
ization is constructed as follows. On the B grid, consider a grid cell
whose central, or scalar, point has indexes i, j. As shown in Fig. 1,
the indexes of the four corners, or velocity points, of the cell are
then i� 1=2; j� 1=2 (left, bottom corner), iþ 1=2; j� 1=2 (right,
bottom corner), iþ 1=2; jþ 1=2 (right, top corner), and
i� 1=2; jþ 1=2 (left, top corner). Analogously, the indexes of the
four mid points on the grid cell sides, or transport points, are
i� 1=2; j (left, centre point), i; j� 1=2 (centre, bottom point),
iþ 1=2; j (right, centre point), and i; jþ 1=2 (centre, top point).
Denoting the grid elements e1 ¼ h1Dn1 and e2 ¼ h2Dn2, where Dn1

and Dn2 are the spatial steps in the two orthogonal directions,
the components of the strain rate tensor are given by

2e1i;j
e2i;j

DDi;j
¼ e2iþ1=2;j

ðuiþ1=2;jþ1=2 þ uiþ1=2;j�1=2Þ
� e2i�1=2;j

ðui�1=2;jþ1=2 þ ui�1=2;j�1=2Þ
þ e1i;jþ1=2

ðviþ1=2;jþ1=2 þ vi�1=2;jþ1=2Þ
� e1i;j�1=2

ðviþ1=2;j�1=2 þ vi�1=2;j�1=2Þ; ð17Þ

2e1i;j
e2i;j

DTi;j
¼ e2

2i;j

uiþ1=2;jþ1=2þuiþ1=2;j�1=2

e2iþ1=2;j

�ui�1=2;jþ1=2þui�1=2;j�1=2

e2i�1=2;j

 !

�e2
1i;j

viþ1=2;jþ1=2þvi�1=2;jþ1=2

e1i;jþ1=2

�viþ1=2;j�1=2þvi�1=2;j�1=2

e1i;j�1=2

 !
;

ð18Þ

2e1i;j
e2i;j

DSi;j
¼ e2

1i;j

uiþ1=2;jþ1=2þui�1=2;jþ1=2

e1i;jþ1=2

�uiþ1=2;j�1=2þui�1=2;j�1=2

e1i;j�1=2

 !

þe2
2i;j

viþ1=2;jþ1=2þviþ1=2;j�1=2

e2iþ1=2;j

�vi�1=2;jþ1=2þvi�1=2;j�1=2

e2i�1=2;j

 !
:

ð19Þ

All three quantities DDi;j
, DTi;j

and DSi;j
are defined on the centre of

the grid cells. The components of the internal stress tensor, also de-
fined on the grid cell centres, can now be evaluated by solving
(12)–(14). The internal stress force components, F1 and F2, which
are defined on the grid cell corners, can then be calculated as

4e1iþ1=2;jþ1=2
e2iþ1=2;jþ1=2

F1iþ1=2;jþ1=2
¼ e2iþ1=2;jþ1=2

ðr1iþ1;jþ1
þr1iþ1;j

�r1i;jþ1
�r1i;j

Þ

þ 1
e2iþ1=2;jþ1=2

ðe2
2iþ1;jþ1=2

ðr2iþ1;jþ1
þr2iþ1;j

Þ�e2
2i;jþ1=2

ðr2i;jþ1
þr2i;j

ÞÞ

þ 2
e1iþ1=2;jþ1=2

ðe2
1iþ1=2;jþ1

ðr12iþ1;jþ1
þr12i;jþ1

Þ�e2
1iþ1=2;j

ðr12iþ1;j
þr12i;j

ÞÞ:

ð20Þ
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4e1iþ1=2;jþ1=2
e2iþ1=2;jþ1=2

F2iþ1=2;jþ1=2

¼ e1iþ1=2;jþ1=2
ðr1iþ1;jþ1

þ r1i;jþ1
� r1iþ1;j

� r1i;j
Þ

� 1
e1iþ1=2;jþ1=2

ðe2
1iþ1=2;jþ1

ðr2iþ1;jþ1
þ r2i;jþ1

Þ � e2
1iþ1=2;j

ðr2iþ1;j
þ r2i;j

ÞÞ

þ 2
e2iþ1=2;jþ1=2

ðe2
2iþ1;jþ1=2

ðr12iþ1;jþ1
þ r12iþ1;j

Þ � e2
2i;jþ1=2

ðr12i;jþ1
þ r12i;j

ÞÞ:

ð21Þ

The discretization in time of both the bilinear and centred dif-
ference formulations on the B grid follows that of Hunke and
Lipscomb (2006), and is

2T
rkþ1

1 � rk
1

Dt
þ rkþ1

1 ¼ Dk
D

Dk
� 1

 !
P; ð22Þ

2T
e2

rkþ1
2 � rk

2

Dt
þ rkþ1

2 ¼ Dk
T

e2Dk
P; ð23Þ

2T
e2

rkþ1
12 � rk

12

Dt
þ rkþ1

12 ¼
Dk

S

2e2Dk
P; ð24Þ

m
ukþ1 � uk

Dt
¼ Fkþ1

1 þ Aðsa1 þ cDqojuo � ukjðuo � ukþ1ÞÞ

þmfvkþ1 �mg
1
h1

@g
@n1

; ð25Þ

m
vkþ1 � vk

Dt
¼ Fkþ1

2 þ Aðsa2 þ cDqojuo � ukjðvo � vkþ1ÞÞ

�mfukþ1 �mg
1
h2

@g
@n2

; ð26Þ

where, for expediency, we have dropped spatial sub-indexes, the
super-indexes k and kþ 1 denote variables evaluated at times kDt
and ðkþ 1ÞDt, respectively, where Dt is the dynamics time step,
cD is the ice-ocean drag coefficient, qo is the reference density of
seawater and uo � ðuo; voÞ is the surface oceanic current. The ice
compressive strength P is updated only every thermodynamics
and ice transport time step, which is normally orders of magnitude
larger than Dt.

3.2. C grid discretization

For each sea ice-ocean coupling step, the B grid discretiza-
tion requires interpolation of sea ice fields onto the ocean grid,
which is of Arakawa C type, and, likewise, surface oceanic
fields need also to be interpolated onto the sea ice grid. With-
in the sea ice model, interpolation of sea ice drift rates onto
the midpoint of grid cell sides is also required before transport
of sea ice scalars is calculated. Such interpolations would be
avoided if a C grid were used in the calculation of the sea
ice dynamics, which is why we have also formulated a centred
difference version of the EVP dynamics (see Kantha and
Clayson (2000) for a C grid, centred difference formulation of
the VP case). Another important reason why a C grid is
desirable is that, with no slip boundary conditions, transport
of scalar properties through narrow straits and passages with
a width of just one single grid cell is possible on a C grid,
while it is precluded on a B grid.

Using the same indexing conventions as for the B grid, the dis-
cretization of the strain rate tensor is

e1i;j
e2i;j

DDi;j
¼ e2iþ1=2;j

uiþ1=2;j�e2i�1=2;j
ui�1=2;jþe1i;jþ1=2

vi;jþ1=2�e1i;j�1=2
vi;j�1=2;

ð27Þ
e1i;j
e2i;j

DTi;j
¼ e2

2i;j

uiþ1=2;j

e2iþ1=2;j

� ui�1=2;j

e2i�1=2;j

 !
� e2

1i;j

vi;jþ1=2

e1i;jþ1=2

� vi;j�1=2

e1i;j�1=2

 !
; ð28Þ

e1iþ1=2;jþ1=2
e2iþ1=2;jþ1=2

DSiþ1=2;jþ1=2
¼ e2

1iþ1=2;jþ1=2

uiþ1=2;jþ1

e1iþ1=2;jþ1

� uiþ1=2;j

e1iþ1=2;j

 !

þ e2
2iþ1=2;jþ1=2

viþ1;jþ1=2

e2iþ1;jþ1=2

� vi;jþ1=2

e2i;jþ1=2

 !
: ð29Þ

Note that the components DD, DT , r1 and r2 are all defined on
the cell centres, while DS and r12 are defined on the corners. The
internal stress force component F1 is located on u points and F2

on v points. In a C grid, the velocity components are ideally located
for the calculation of the components of the strain rate and the
internal stress tensors, requiring fewer interpolations than on the
B grid. As the invariant D is used to compute the internal stress
components, it needs, however, to be computed both on cell cen-
tres and corners, and so, for the purpose of the calculation of D,
DD and DT must be interpolated onto cell corners, while DS must
be interpolated onto cell centres. The expression for DD on cell cor-
ners is

ðe1i;jþ1=2
þ e1iþ1;jþ1=2

Þðe2iþ1=2;j
þ e2iþ1=2;jþ1

ÞDDiþ1=2;jþ1=2

¼ e2iþ1=2;jþ1
ðe1iþ1;jþ1=2

DDi;j
þ e1i;jþ1=2

DDiþ1;j
Þ þ e2iþ1=2;j

ðe1iþ1;jþ1=2
DDi;jþ1

þ e1i;jþ1=2
DDiþ1;jþ1

Þ ð30Þ

with an analogous formula for DTiþ1=2;jþ1=2 , while the centred value of
DS is given by

4DSi;j
¼ DSi�1=2;j�1=2

þ DSiþ1=2;j�1=2
þ DSiþ1=2;jþ1=2

þ DSi�1=2;jþ1=2
: ð31Þ

The internal stress force components on the C grid are

2e1iþ1=2;j
e2iþ1=2;j

F1iþ1=2;j
¼ e2iþ1=2;j

ðr1iþ1;j
� r1i;j

Þ

þ 1
e2iþ1=2;j

ðe2
2iþ1;j

r2iþ1;j
� e2

2i;j
r2i;j
Þ

þ 2
e1iþ1=2;j

ðe2
1iþ1=2;jþ1=2

r12iþ1=2;jþ1=2
� e2

1iþ1=2;j�1=2
r12iþ1=2;j�1=2

Þ; ð32Þ

2e1i;jþ1=2
e2i;jþ1=2

F2i;jþ1=2
¼ e1i;jþ1=2

ðr1i;jþ1
� r1i;j

Þ

� 1
e1i;jþ1=2

ðe2
1i;jþ1

r2i;jþ1
� e2

1i;j
r2i;j
Þ

þ 2
e2i;jþ1=2

ðe2
2iþ1=2;jþ1=2

r12iþ1=2;jþ1=2
� e2

2i�1=2;jþ1=2
r12i�1=2;jþ1=2

Þ: ð33Þ

Time stepping of the internal stress tensor on the C grid is iden-
tical to (22)–(24), but with r1 and r2 calculated on the centre of
the grid cells and r12 calculated on the corners. The momentum
equation is now solved using

mu
ukþ1 � uk

Dt
¼ Fkþ1

1 þ Auðsa1 þ cDqojuo � ukjuðuo � ukþ1ÞÞ

þmufuvkþc
u �mug

1
h1

@g
@n1

; ð34Þ

mv
vkþ1 � vk

Dt
¼ Fkþ1

2 þ Avðsa2 þ cDqojuo � ukjvðvo � vkþ1ÞÞ

�mvfvukþ1�c
v �mvg

1
h2

@g
@n2

; ð35Þ

where the subscripts u and v represent a variable defined on, or
interpolated onto, u and v points, respectively, and where c is alter-
natively equal to 1 or 0. On odd iterations, c ¼ 0 and (34) is solved
first. Then, ukþ1 is interpolated onto v points and is used to solve
(35). On even iterations, c ¼ 1 and (35) is solved first. The updated
value of v is then interpolated onto u points to calculate the Coriolis
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term of (34). This procedure is equivalent to solving the Coriolis
term semi-implicitly. Note that, unlike on a B grid, an implicit treat-
ment of the Coriolis term on a C grid would require the simulta-
neous solution of (34) and (35) all across the domain, which
would be computationally expensive.

3.3. Boundary conditions

The way in which boundary conditions are dealt with also dif-
fers from one grid to another. A no-slip condition is prescribed
on land boundaries. On the B grid, both components of the velocity
vector are defined on the coast, and their value is therefore simply
set to zero on land points. On the C grid, in contrast, the normal
velocity is defined and set to zero at the coast, but the tangential
velocity is not defined. To impose a zero tangential velocity at
the coast, a mirror velocity point is defined inland of the boundary,
and its value is set to the opposite of the tangential velocity com-
ponent seaward of the coast, thus delivering a no-slip condition on
the coast.

On a coarse resolution B grid with a no slip boundary con-
dition, plug flows along lateral boundaries are poorly repro-
duced. This can adversely affect the transport of sea ice
properties if, as it is customary, longshore advective velocities
are calculated as the average of the longshore velocity compo-
nent on the coast, which is zero, and the nearest offshore veloc-
ity component. To alleviate this problem, the longshore
component of the advective velocity on the B grid is prescribed
to be equal to the nearest offshore velocity component. This
boundary condition for advection helps reducing the differences
in ice transport and thickness between B grid and C grid simu-
lations, and makes integrations carried out on either grid more
easily comparable.

3.4. Linear plastic wave propagation in grids B and C

In ocean modeling, the problem of geostrophic adjustment in fi-
nite difference shallow water equations has traditionally provided
a useful framework for the intercomparison of discrete staggered
grids (Randall, 1994). Interestingly, a parallel analysis can be car-
ried out for the linearized sea ice momentum equations in the case
of the cavitating fluid approximation, which consists in setting the
parameter e in (8) and (9), or (13) and (14), to infinite, so that sea
ice shear stresses vanish (Flato and Hibler, 1992). Assume a
motionless sea ice cover of uniform thickness per unit area h0

and concentration A0. Let us assume that the ice is experiencing
compression and that all external forcing is zero. For time scales
much larger than the damping time scale for sea ice elastic waves,
T, the linearized sea ice momentum equations under the cavitating
fluid approximation are:

m0u0t ¼ �$P0 �m0f k� u0; ð36Þ
P0t ¼ �ð1þ CA0ÞP0$ � u0; ð37Þ

where the primed quantities indicate small departures from the
unperturbed values and m0 and P0 are the unperturbed sea ice
mass per unit area and compressive sea ice strength, respec-
tively. Eqs. (36) and (37) are formally equivalent to the shallow
water equations linearized about a resting state (Randall, 1994).
These equations admit free wave solutions with dispersion
relation

r
f

� �2

¼ 1þ k2ðk2 þ l2Þ; ð38Þ

where r is the frequency of the wave, k and l are wavenumbers in
the x and y directions, respectively (assuming the use of Cartesian
coordinates), and k is a deformation radius given by
k ¼ cf�1 ¼ 1þ CA0ð ÞP�e�Cð1�A0Þ

qi

� �1
2

f�1; ð39Þ

where c is the phase speed of linear compressive inertia-plastic
waves in sea ice and qi is the ice density. For a typical central Arctic
sea ice concentration in winter of A0 ¼ 1 and values used in our
experiments of P� ¼ 20� 103 Nm�2, C ¼ 20 and qi ¼ 900 kg m�3,
we obtain a phase velocity of plastic waves of 21.6 cm s�1 and a
deformation radius of about 148 km. A similar analysis for the prop-
agation of uniaxial plastic waves in sea ice has been carried out by
Gray (1999).

The numerical equivalent of the dispersion relation (38) for the
shallow water equations in different types of Arakawa grids was
derived by Arakawa and Lamb and published by Randall (1994).
Here we include the expressions for the B and C grids, which,
assuming a square grid of cell size d, are:

r
f

� �2

¼ 1þ k2 1� cosðkdÞ cosðldÞ
d2
=2

ð40Þ

and

r
f

� �2

¼ 1þ cosðkdÞ þ cosðldÞ þ cosðkdÞ cosðldÞ
4

þ k2

� sin2ðkd=2Þ þ sin2ðld=2Þ
d2
=4

; ð41Þ

respectively. For the LIM applications to be discussed below, the ra-
tio of plastic deformation radius to grid size, k=d, lies between 2 and
3. From Fig. 2, which displays contours of normalized frequency r=f
as a function of kd and ld for the case k=d ¼ 2, it is easy to see that
the latter dispersion relation is closer to the exact relation, (38),
than the former. In particular, on the C grid, r grows monotonically
with k and l, and the associated group velocity is always positive, as
it is in the continuous case, while, on a B grid, r is not monotonic,
and group velocity components are negative whenever kd or ld be-
come larger than p=2. Based on these considerations, the perfor-
mance of the C grid appears to be superior to that of the B grid at
resolutions of 75 km or less, thus providing additional motivation
for using a C grid sea ice model.

4. Results and discussion

All the simulations presented here have used the 2� global con-
figuration of the model OPA-LIM described by Timmermann et al.
(2005), including the forcing. The grid is tripolar, with all three
poles located on land, and its minimum resolution is about
65 km in the Arctic and 50 km in the Antarctic. Fram Strait is re-
solved with 5 grid cells, while Bering Strait had to be artificially
widened to 2 grid cells. Parry Channel, the strait connecting the
Beaufort Sea and Baffin Bay, is represented by a 2 cell-wide passage
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through the Canadian Archipelago. Wind stress is computed with a
drag coefficient of 1:4� 10�3, while ice-ocean drag uses a coeffi-
cient of 5:5� 10�3. No turning angle is applied for the calculation
of air-ice, air-ocean or ice-ocean stresses. The sea ice strength
parameter is P� ¼ 20� 103 Nm�2, and the lead closing parameter
h0 ¼ 0:3 m.

The ocean model has a time step of 5760 s (96 min), which re-
quires 15 ocean time steps per day, and is coupled to the sea ice
model every five time steps. The dynamics time step is 120 s and
the elastic time scale T is 40 times larger to ensure stability. The
ocean model is initialized with temperature and salinity fields
from the World Ocean Atlas (Levitus et al., 1982), while the sea
ice model initial conditions are set to uniform sea ice thickness
of 3 m in the Arctic and 1 m in the Antarctic. All experiments
started from the same 1948–1959 spin-up integration on a B grid
and with VP ice dynamics used by Timmermann et al. (2005),
but with Dmin ¼ 2� 10�9 s�1 instead of 2� 10�8 s�1.

The control run was conducted with the EVP formulation of the
sea ice dynamics on a C grid presented in Section 3.2. The results
from this experiment do not greatly differ from the validation pre-
sented in Timmermann et al. (2005), and so we restrict our analysis
to only a few salient features.

The Arctic sea ice extent, defined as the total oceanic area where
the ice concentration is greater than, or equal to, 15%, oscillates
from about 16� 106 km2 in March to 10:5� 106 km2 in September,
in good accordance with observations. In summer, however, ice
concentrations remain above 90% in the central Arctic, and rela-
tively heavy ice covers persist in the Greenland and Barents Seas
at times when observations show ice-free conditions. Ice thickness
varies from more than 6 m along the Canadian Arctic Archipelago
to 4 m in the central Arctic, and about 2 m over the western Sibe-
10 cm/s

Fig. 3. Simulated Arctic mean sea ice thicknesses in March (top left) and September (top r
for the period 1992–2001 simulated by the model (bottom left) and from observations (
velocities distributions.
rian shelf (Fig. 3, top panels). A persistent feature of the model is
that, compared with the observations of Bourke and Garrett
(1987), it tends to somewhat overestimate the ice thickness along
the Siberian coast: by about 1 m in the Kara Sea, 1.5 m in the Lap-
tev Sea, and 2 m in the East Siberian Sea.

The two main patterns of the Arctic ice current system, namely
the Beaufort gyre and the transpolar ice drift are present (Fig. 3,
bottom left panel) but they are weaker than in data produced by
the CERSAT from QuikSCAT and SSM/I drift vectors (Ezraty and
Piollé, 2004). For the comparison, we interpolate monthly drift
vectors from a 62.5 km polar stereographic grid to our simulation
grid and we average data over all winter seasons (October to April)
from 1992 to 2001 (Fig. 3, bottom right panel). Simulated velocities
along the Alaskan North Coast in winter are about 0–2 cm s�1 in-
stead of 1–5 cm s�1 in observations, and the maximum is located
nearer to Bering Strait. The simulated transpolar drift is also
weaker, 1–3 cm s�1 instead of 2–4 cm s�1, and its location is
influenced by the absence of the Franz Joseph Archipelago in our
configuration. This weaker drift is partly due to the small ratio
between the atmospheric drag coefficient ð1:4� 10�3Þ and the
ice-ocean drag coefficient ð5:5� 10�3Þ.

Following Martin and Gerdes (2007), we have computed histo-
grams of monthly mean ice drift speed in the central Arctic basin to
characterize the ice motion. For this calculation, the region of inter-
est is the area located north of 70� N between 50� E and 270� E, and
north of 80� N between 270� E and 50� E, as shown on the third pa-
nel of Fig. 3. The left panel of Fig. 4 shows histograms for March
and September, both of which compare rather well with the obser-
vational estimates used by Martin and Gerdes (2007). A mode at
very low speed exists for both months. In March, sea ice speeds
are mainly below 0.05 m s�1, and 45% of them are actually smaller
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than 0.01 m�1 s. In September, ice tends to be faster but, still, it al-
most nowhere reaches 0.10 m s�1. While these results are encour-
aging, a more detailed analysis should be conducted to ascertain
the role that anomalous features of the ice distribution, such as
the excess thickness along the Eurasian coast, play in modifying
the flow of sea ice. The mean ice export through Fram Strait is
about 0.11 Sv, in the upper limit of observational estimates.

In the Southern Ocean, the ice extent oscillates between
5� 106 km2 in February and 19� 106 km2 in August, values which
are close to the observational ones. Sea ice concentrations are also
quite realistic, except along coastlines, where polynya formation
cannot be appropriately represented because of the coarse resolu-
10 cm/s

Fig. 5. Simulated Southern Ocean mean sea ice concentration in March (top left) and S
(March to November) for the period 1979–1997 simulated by the model (bottom left) a
tion of the model (Fig. 5, top panels). The winter mean ice velocity
field for the period 1979–1997 (March to November) shows a fairly
strong westward drift of 2–8 cm s�1 all around Antarctica, and an
offshore eastward drift of about 2–6 cm s�1 (Fig. 5, bottom left pa-
nel). This is similar to the circulation obtained by averaging SSM/I
monthly mean ice drift from the Atlas of Antarctic Sea Ice Drift
(Schmitt et al., 2004) over the same period (Fig. 5, bottom right pa-
nel). Observation vectors have been interpolated on the simulation
grid for comparison. The Weddell, Ross and Kerguelen gyres, with
drift speeds of 2–5 cm s�1, are all represented by the model,
although the observed northward ice drifts in the Weddell and
Ross regions are wider and somewhat stronger than in our
10

8

6

4

2

0

[cm/s]
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

12

eptember (top right) for the period 1965–2001 and winter mean sea ice velocities
nd from observations (bottom right).



S. Bouillon et al. / Ocean Modelling 27 (2009) 174–184 181
simulation, presumably at least partly because of deficiencies in
the surface wind stress. The histogram of velocities for the entire
Southern Ocean reveals a sea ice cover that is significantly faster
than its central Arctic counterpart. However, the ice speed mode
is still in the vicinity of 0.01 m s�1 all year round.

The results of the EVP simulation on a C grid are quite encour-
aging. However, before adopting this formulation as standard, it is
important to compare those results with output from integrations
that use other discretization methods, as discussed in Section 3. To
this end, we have conducted a number of 5-year experiments start-
ing in 1960. These experiments are as follows. Experiment EVPB1
uses the EVP discretization of Hunke and Dukowicz (2002) on a
B grid. Experiment EVPB2 is as EVPB1, but with the simpler, cen-
tred difference discretization outlined in Section 3.1. The third
experiment, EVPC1, uses the centred difference, C grid formulation
of Section 3.2, the same as in the control run. A second C grid
experiment, denoted EVPC2, was performed in which all straits
and passages with a width of only one grid point were closed to
ice advection. Finally, three experiments were also carried out
using the VP, B grid discretization of Fichefet and Morales Maqueda
(1997), and these are all collectively referred to as VPB experi-
ments. The first VP experiment (VPB1) uses Dmin ¼ 2� 10�9 s�1

and one subcycling time step, as in the spin-up integration. The
second experiment (VPB2) is like the first, but using three subcy-
cling time steps. The third experiment (VPB3) uses
Dmin ¼ 2� 10�8 s�1 and three subcycling time steps. The impact
of the different methods of solution of the sea ice dynamics on
the Southern Ocean ice cover are minuscule, and so we will con-
centrate on results for the Northern Hemisphere.

We start by examining the ability of the VP discretization, as
implemented in Fichefet and Morales Maqueda (1997), to approx-
Fig. 6. Left hand side of (11) calculated from instantaneous stress states on a simulation
Values larger than 1.2 (black) correspond to states located out of the ellipse, values betw
0.8 (light grey) correspond to states inside the ellipse.

Fig. 7. Mean ice thickness differences between experiments VPB2 and VPB1 (left) and be
for 1963 and 1964).
imate a plastic flow. For numerical convergence reasons, the VP
dynamics of Fichefet and Morales Maqueda (1997) required the
use of a relatively large value of Dmin, namely, 2� 10�8 s�1. This fig-
ure is probably an order of magnitude too large for a limiting defor-
mation rate, and leads to an excessively viscous ice dynamics. In
contrast, the EVP dynamics work well with arbitrarily small values
of Dmin, as states with small deformation rates can be gently
achieved through progressive elastic relaxation. To evaluate the
impact of a relatively high value of Dmin on sea ice simulations with
the VP rheology, we carried out three experiments. They differ in
the minimum value of Dmin used and also in the number of subcy-
cling time steps for the dynamics (subcycling consists in solving
the momentum equation with a time step smaller than the one
used for ice thermodynamics and transport).

To see how well the elliptic relation between principal stress
components is fulfilled, we compute the quadratic function
ðr1=P þ 1Þ2 þ e2ðrs=PÞ2 from (11) and check how close it is to 1.
A greater value corresponds to a state out of the elliptic yield curve,
while a smaller value indicates a state inside the ellipse. With one
subcycling time step, the VP formulation does a very poor job at
representing the yield curve. In the example shown in the left pa-
nel of Fig. 6, we can see large regions of the Arctic are in a stress
state located outside the ellipse. Ellipticity is partly recovered
when three subcycling time steps are applied (central panel of
Fig. 6), but there are still situations when the quadratic expression
on the left hand side of (11) is greater than 1. Using three subcy-
cling time steps and a higher value of Dmin further improves the
representation of the elliptical yield curve thanks to a better con-
vergence of the numerical scheme, but it generates more creep
flow, where the value of quadratic function is lower than 1, as
shown in the right panel of Fig. 6. More elaborated implicit
day of September 1964 in experiments VPB1 (left), VPB2 (centre) and VPB3 (right).
een 0.8 and 1.2 (grey) correspond to states near the ellipse and values smaller than

tween experiments VPB3 and VPB2 (right) in winter (October to December average
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schemes can be used to improve the convergence while using
small values of Dmin (Zhang et al., 1997; Zhang and Rothrock, 2000).

In terms of the representation of the Arctic winter mean
(December to March) ice thickness geographical distribution, the
impact of using three subcycling times steps (VPB2) instead of just
1 (VPB1) is a diminution of more than 0.15 m along the Canadian
Arctic Archipelago, in the central Beaufort Sea and in the Laptev
Sea (Fig. 7, left panel). In contrast, there is more ice along the east-
ern coast of Greenland. Differences are even more marked between
experiments VPB3 and VPB2, which differ by the magnitude of Dmin

(Fig. 7, right panel). There is a sensible decrease in both the hori-
zontal gradients and spatial mean value of the ice thickness across
the entire central Arctic basin in VPB3 compared to VPB2. Ice is
�10% thinner in the central Arctic and �10% thicker in the Green-
land and northern Barents seas. This is so because the more viscous
dynamics of VPB3 allows for a winter flow in the central Arctic that
is 5–10% stronger than in VPB2, and causes as well an easier trans-
port of ice across Fram Strait and Parry Channel.

The differences between the results of the three VPB experi-
ments illustrate the importance of guaranteeing that plastic ice
flow is well represented. This requires the use of relatively small
values of Dmin in the VP dynamics, which results in a fairly slow
numerical convergence toward the plastic solution. In contrast,
sensitivity tests with the EVP rheology show that a small value
of Dmin (2� 10�12 s�1, say) can be used without in any way compro-
mising convergence. The EVP solution is also not affected by the
particular value of T chosen, as long as it is several times smaller
than the thermodynamics and transport time steps. Thus, with
suitable Dmin and T values, ice internal stress states calculated with
2BPVE1BPVE

Fig. 8. Instantaneous shearing strain rates in a simulation day of October 1
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Fig. 9. Mean ice thicknesses in experiment EVPB1 (left) and mean ice thickness differen
average for 1963 and 1964).
the EVP formulation tend to be much closer to the elliptical yield
curve than those determined using the VP rheology.

The aim of experiments EVPB1, EVPB2, EVPC1 and EVPC2 was to
examine the influence of the spatial discretization on EVP solu-
tions. Overall, there is a reassuring similarity between the results
of all four experiments, although we note that the B grid tends to
develop checkerboard patterns in certain variables, such as the
ice divergence field. In most cases, this computational mode does
not appear to have a direct impact on the ice dynamics, but it could
be a problem if deformation rates are used in the calculation of the
ice thickness redistribution. The use of a bilinear approach à la
Hunke and Dukowicz (2002), rather than the more simple centred
difference formulation we have proposed in Section 3.1, helps
attenuating the checkerboard mode thanks to the spatial averaging
involved in the calculation of the internal stress force. This numer-
ical mode cannot appear on a C grid.

An example of instantaneous shearing strain rates is shown in
Fig. 8 for the EVPB1, EVPB2 and EVPC2 simulations. The shearing
strain rate patterns look similar in all three experiments and show
how the EVP dynamics is capable of creating spatial linear and rel-
atively narrow features along which high ice deformation occurs.
Looking into these features more closely, we note that their de-
tailed structure depends both on the discretization and on the rel-
ative orientation of linear features and the numerical grid. The B
grid with the simple EVP discretization (EVPB2) produces the nar-
rowest features (just two cells wide) when they are aligned with
the grid. However, as it might have been expected, checkerboard
patterns in shear stain rates are very prominent in this discretiza-
tion, while they are less so in the cases EVPB1 and EVPC2. Never-
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Fig. 10. Mean ice thickness differences between experiments EVPC1 and EVPB1 (left) and between experiments EVPC2 and EVPB1 (right) in winter (October to December
average for 1963 and 1964).
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theless, these differences do not seem to influence the ice drift very
much. Ice drift patterns are fairly similar in all simulations.

Winter mean sea ice thickness differences between EVPB1 and
EVPB2 are fairly small except in the Lincoln Sea and along Parry
Channel (Fig. 9, right panel). These very localized differences do
not seem to have a significant large-scale impact, and so we have
not investigated their origin in any great detail. The ice volume ex-
port through Fram Strait is virtually the same in both experiments:
about 0.11 Sv, with a standard deviation of 0.08 Sv.

Of perhaps greater interest are the differences between the B
grid and C grid integrations. The left panel of Fig. 10 shows the dif-
ference in winter mean ice thickness between experiments EVPC1
and EVPB1. Ice in the central Arctic tends to be thinner in the
EVPC1 experiment, with the exception of a few choke points, such
as Parry Channel and the passages between Eurasia and the New
Siberian Islands, Severnaya Zemlya and Novaya Zemlya. These pas-
sages are represented with just one grid point in our model, and,
therefore, no ice can flow through them when a B grid is used.
As a result, ice simulated in EVPB1 tends to accumulate on the up-
stream side of these passages and, thus, be thicker than it would be
on a C grid, while, downstream of the passages, the ice tends to be
generally thinner. This is confirmed by the results of a second C
grid experiment, EVPC2, in which all one cell straits were closed
to ice transport. The right panel of Fig. 10 shows that the differ-
ences in winter sea ice thickness between this experiment and
EVPB1 have sensibly decreased on both sides of the narrow central
Arctic passages. In both EVPC1 and EVPC2, ice area and volume ex-
ports across Fram Strait are about 5% smaller than in EVPB1. In
contrast, ice circulation in the Beaufort Gyre is slightly stronger
(+5%), and southward velocities along the east Greenland coast
are around 10% larger, which is consistent with the existence of
the band of thicker ice one can observe all along the eastern Green-
land coast, and that counters the larger onshore component of the
Coriolis force associated with the 10% higher velocities.

5. Conclusions

The elastic–viscous–plastic (EVP) sea ice rheology formulation
of Hunke and Dukowicz (2002) has been incorporated in the Lou-
vain-la-Neuve sea-Ice Model, version 2 (LIM2), which has until
now used a viscous–plastic (VP) sea ice dynamics (Hibler, 1979).
Two centred difference discretizations of the EVP rheology have
also been introduced, one defined on a B grid and the second de-
fined on a C grid. These centred difference formulations help
reducing computation costs for the sea ice dynamics by about a
factor of 2 compared to the more sophisticated approach of Hunke
and Dukowicz (2002).
Because LIM runs normally coupled to a C grid ocean model (the
Nucleus for European Modelling of the Ocean, NEMO), we have re-
tained the centred difference C grid formulation of the EVP dynam-
ics as the most suitable for LIM. The performance of the coupled
ice-ocean model has been illustrated with results from a long sim-
ulation spanning the years 1960–2001. The model reproduces well
the sea ice concentration, thickness and velocity fields in both
hemispheres.

We have conducted a number of short experiments to test the
sensitivity of the model to the use of the different implementations
of the ice rheology. We have first compared the performance of the
original VP formulation in LIM with the new EVP implementation.
Attaining appropriate plastic behavior with the VP dynamics re-
quires the use of subcycling and a fairly small value of Dmin (on
the order of 2� 10�9 s�1 or less), which hinders convergence of
the relaxation algorithm used by the VP method. In contrast, com-
puting time is not affected by the value of Dmin when using the EVP
formulation.

We have also intercompared EVP simulations with different
spatial discretizations. The two B grid discretizations we have
investigated, namely, the one by Hunke and Dukowicz (2002)
and the simplified discretization described in Section 3.1, lead both
to very similar results, at least for relatively coarse spatial model
resolutions. Disparities in ice thickness between the centred differ-
ence formulations on B grid and C grid are largely associated with
slower ice transport through narrow straits and along coastlines on
the B grid. There is also a tendency for the C grid formulation to
produce slightly higher ice velocities in the central Arctic, but also
a reduced ice export through Fram Strait.

In summary, the new EVP formulation on a C grid implemented
in LIM is able to produce realistic ice fields in both hemispheres. In
addition, the EVP ice dynamics approaches plasticity better and
numerically more efficiently than the previous VP implementation.
We therefore recommend the use of the C grid EVP formulation of
the ice dynamics in future LIM applications.
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