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The 2012 sea ice kiss:

two pending challenges

Million km² 

Observed summer sea ice extent [Comiso & Nishio, 2008]

September - Arctic

February - Antarctic



Challenge 1

Expanding Antarctic sea ice

Sea ice concentration trend [%/decade]

[data: Comiso and Nishio, 2008]

- Mostly areal observations

- GCMs are of limited utility

because of biased mean state and 

variability [Zunz et al., 2013]

- Several interpretations proposed

- Changes in winds [Holland and Kwok, 2012]

- Changes in hydrological cycle 
[Zhang, 2007; Bintanja et al., 2013]

- Unforced variability [Polvani & Smith, in rev.]

- …



Challenge 2

Summer Arctic sea ice predictability
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September Arctic sea ice extent
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Quadratic fit

September Arctic sea ice extent
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Challenge 2

Summer Arctic sea ice predictability



Quadratic fit

A B C D

September Arctic sea ice extent

simulated by a CMIP5 model
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Challenge 2

Summer Arctic sea ice predictability

Never rely on your first 

intuition for complex systems!



Data assimilation and  ensemble Kalman filter

Reconstructing Antarctic sea ice changes

Is there an added value from sea ice initialization?
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[Evensen, 2003] 

The ensemble Kalman filter is a 

multivariate data assimilation method



The ensemble Kalman filter is a 

multivariate data assimilation method

PSU

Analysis fresher

than forecast

Example of an update in sea

surface salinity

Analysis saltier

than forecast



K = P HT ( HTH P + R )
-1

The ensemble Kalman filter

relies on ensemble simulations

Model error

covariance matrix

(from 25 members)

Obs. error

covariance matrix

(diagonal for now)



The ensemble Kalman filter

is a forecast-analysis method

t t+1Perturbed

winds+T2m

obs

t+1 t+2



Ensemble spread, 

restartability and limitations

The distribution of ensemble members

should reflect the full model uncertainty

* 25 members with perturbed atmospheric

forcing (winds/2m-air temperature)

* Localization [Sakov and Bertino, 2010]
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Correlation (fictious example)

* Use of perturbed observations 
[Burgers et al., 1998]



A « sanity check » for the model is necessary

because gaussianity assumption is rarely fulfilled

> Reset negative ice concentrations/thickness to zero

> Bound total ice concentration by 1

> Ice thickness stays within category bounds

Ensemble spread, 

restartability and limitations



Data assimilation and  ensemble Kalman filter

Reconstructing Antarctic sea ice changes

Is there an added value from sea ice initialization?
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Trend in sea ice extent in the Southern Ocean

Improved sea ice extent variability



Improved simulated

sea ice thickness
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Mean bias in simulated thickness

against ASPeCt data [Worby et al., 2008] 
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Weak, regionalized and noisy

increase in Antarctic sea ice volume

1980-2008 trend in 

sea ice volume 

[km³/decade]
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Mechanisms for Southern Ocean

sea ice variability

1980-2008 linear trend in 

reconstructed sea ice thickness +10

−10

−5

+5 

0

cm/decade
The global increase in volume
should be analyzed

at the regional scale first

Regional signed responses
are a result of regional dynamical

and thermodynamical processes

- Changes in winds [Holland and 

Kwok, 2012]

- Changes in hydrological cycle 
[Zhang, 2007; Bintanja et al., 2013]

- Unforced variability [Polvani & 

Smith, in rev.]

- …



Data assimilation and Ensemble Kalman filter

Reconstructing Antarctic sea ice changes

Is there an added value from sea ice initialization?



The predictive skill from a model may depend on

> The metrics used to measure it

> The model used

> The data assimilation method used



Antarctic ocean/sea ice

initialization efforts  

Initialization of 3-D ocean

does not significantly

improve sea ice

predictability

[Zunz et al., 2013]

Winter SH sea ice extent correlation with observations



Arctic sea ice

initialization efforts 

The onset, timing and 

amplitude of large 

sea ice anomalies are 

hardly predictable

[adapted from Tietsche et al., 2013]

Truth

Initialized

Climatology



Arctic sea ice

initialization efforts 

Arctic sea ice

extent [million km²] Initialization

March 2007
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Conclusions

Arctic & Antarctic sea ice data assimilation

Useful for sea ice state reconstruction

Marginal improvements for sea ice

predictability

Prospects for joint state/parameter

estimation



Thank you
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