Modelling recent and future Antarctic sea ice changes

François Massonnet

T. Fichefet, H. Goosse, P. J. Hezel, G. Philippon, C. M. Bitz, M. M. Holland

Modelling recent and future

T. Fichefet, H. Goosse, P. J. Hezel, G. Philippon, C. M. Bitz, M. M. Holland

Modelling recent and future Motories sea ice changes François Massonnet

T. Fichefet, H. Goosse, P. J. Hezel, G. Philippon, C. M. Bitz, M. M. Holland

(IPCC WG1 AR5, 2013)

Annual Arctic sea ice extent anomalies

The Arctic sea ice clock is ticking

Antarctic sea ice variability more puzzling than ever

Interlude Recent Antarctic sea ice increase

Interlude Recent Antarctic sea ice increase

The seasonality of Arctic sea ice extent is better simulated in CMIP5 than CMIP3

Average Arctic sea ice extent

The CMIP5 model spread around the mean is still large

Trends in September Arctic sea ice extent are better simulated in CMIP5 than CMIP3

September Arctic sea ice extent

Trends in September Arctic sea ice extent are better simulated in CMIP5 than CMIP3

Distribution of CMIP5 September Arctic sea ice extent **trends** (1979-2010, 66 realisations)

Anthropogenic influences have very likely contributed to Arctic sea ice loss since 1979

Mean Antarctic sea ice extent: noticeable improvements, but still very large spread

(IPCC WG1 AR5, 2013)

Mismatch between observed and simulated Antarctic sea ice variability

(Zunz et al., The Cryosphere, 2013)

Conclusion 1 CMIP3 \rightarrow CMIP5: improvements with persistent uncertainties

	Arctic	Antarctic
Mean state	Improved	Improved
Trends/ variability	Improved	Status quo
Attribution/ Detection	Changes detectable and attributable	Uncertain

1. Modelling sea ice : from CMIP3 to CMIP5 Improvements with persistent uncertainties

Interlude Recent Antarctic sea ice increase

1. Modelling sea ice : from CMIP3 to CMIP5 Improvements with persistent uncertainties

Interlude Recent Antarctic sea ice increase

Why is **observed** Antarctic sea ice extent increasing?

Why is **observed** Antarctic sea ice extent increasing?

Why is modelled Antarctic sea ice extent decreasing?

Caution: trends are space-dependent

1980-2008 observed **trends** in sea ice concentratrion

1. Forced signal?

Ice sheet melt, precipitation, winds, (ozone) ...

[Bintanja et al., 2013; Swingedouw et al., 2008; Holland and Kwok, 2012; Zhang, 2006]

- 1. Forced signal?
- 2. Multi-decadal variability? Ocean-ice feedbacks, ocean variability [Goosse and Zunz, 2013; Latif et al., 2013]

- 1. Forced signal?
- 2. Multi-decadal variability?

3. Statistical noise? Significance of trends depends on season & region

[e.g., Parkinson and Cavalieri, 2012]

Mmwymmysaam

- 1. Forced signal?
- 2. Multi-decadal variability?

3. Statistical noise?

4. Methodological artefact? Jump in retrieved sea ice area in 2007-2008 [Screen et al., 2011]

Mmmmm

- 1. Forced signal?
- 2. Multi-decadal variability?

3. Statistical noise?

- 4. Methodological artefact?
- 5. Combination of 1-4?

Mm Mm Martin Mulling

Mmmmm

- 1. Forced signal?
- 2. Multi-decadal variability?

3. Statistical noise?

- 4. Methodological artefact?
- 5. Combination of 1-4?

1. Modelling sea ice : from CMIP3 to CMIP5 Improvements with persistent uncertainties

Interlude Recent Antarctic sea ice increase

The Arctic sea ice cover will *very likely* continue to shrink as global temperature rises

Changes in CMIP5 Arctic sea ice extent (reference: 1986-2005)

The Arctic sea ice cover will *very likely* continue to shrink as global temperature rises

The spread in summer Arctic sea ice projections remains wide

September sea ice extent simulated by CMIP5 models

(Massonnet et al., The Cryosphere, 2012)

Year of disappearance of summer Arctic sea ice linked to baseline sea ice state

(IPCC WG1 AR5, 2013; Massonnet et al., The Cryosphere, 2012)

A nearly ice-free Arctic Ocean in September is *likely* by mid-century (high-emission scenario)

(IPCC WG1 AR5, 2013; Massonnet et al., The Cryosphere, 2012)

Possible recovery of summer Arctic sea ice if radiative forcing decreases

(Hezel et al., in prep.)

7 out of 9 CMIP5 models reach ice-free conditions in winter by 2300 under a high-emission scenario

A decrease in Antarctic sea ice extent is expected during the 21st century, but with *low confidence*

Conclusion 2 CMIP5 offers the possibility to investigate Arctic sea ice projections, caution has to be taken for Antarctic

1. Modelling sea ice : from CMIP3 to CMIP5 Improvements with persistent uncertainties

Interlude Recent Antarctic sea ice increase

2. Sea ice projections

Possible analyses for the Arctic, uncertain for the Antarctic 1. Modelling sea ice : from CMIP3 to CMIP5 Improvements with persistent uncertainties

Interlude Recent Antarctic sea ice increase

2. Sea ice projections

Possible analyses for the Arctic, uncertain for the Antarctic

Antarctic sea ice A priority for CMIP6?

francois.massonnet@uclouvain.be
www.climate.be/u/fmasson

IPCC report: www.climatechange2013.org

a fair and his of the second