EC-Earth Meeting (Reading, UK) – January 18th 2011

Importance of physics for global hindcast simulations of sea ice with NEMO-LIM

François Massonnet, T. Fichefet, H. Goosse, M. Vancoppenolle, P. Mathiot and C. König Beatty

Contact : francois.massonnet@uclouvain.be

Georges Lemaître Centre for Earth and Climate Research, Earth and Life Institute, Université catholique de Louvain

Inter-GCMs spread and unrealistic polar climate

Modeled minus observed mean monthly sea ice extents (1979-2004) from 11 major GCMs. (Fig. 4 of *Parkinson et al. (2006)*)

- Uncertainty in atmosphere (Bitz et al., 2002; Walsh et al., 2002)
- Influence of initial conditions (Goosse and Rensen, 2005)
- Representation of sea ice physics (Holland et al., 2006; Bitz et al., 2001)

Outline

1. Experimental setup

- 2. Model metrics
- 3. Results
- 4. Discussion

1. Experimental setup

Sea ice models				
	LIM2 (Fichefet and Morales Maqueda, 1997) (in current EC-Earth)	LIM3 (Vancoppenolle et al., 2009) (coupling under way)		
Thermodynamics	1 -category Ice Thickness Distribution Basic brine modelling	5 -category Ice Thickness Distribution Explicit brine modelling + drainage		
Vertical resolution	2+1 layers (ice + snow) Effective thermal conductivity	5+1 layers (ice + snow)		
Dynamics	Viscous-Plastic B-grid	Elastic-Viscous-Plastic C-grid		

1. Experimental setup

NCEP/NCAR daily surface temperatures and wind speeds (1948-2008) Monthly climatologies of surface relative humidity, cloud fraction, precipitation rate and river runoff

2. Model metrics

Need for **comprehensive** metrics for sea ice :

- Both hemispheres
- Regional and global
- Different variables
- Statistically robust
- Keep it simple!!

2. Model metrics

Diagnostic	Hemispheres	Observations	Period	Mean state	Variability	Local or global ?
Ice concentration	NH and SH	OSISAF (2010) (interp. to ORCA1)	1979-2007	Mean Seasonal Cycle 1979- 2007	Std dev anom. + trend	Local
Ice extent	NH and SH	OSISAF (2010) (interp. to ORCA1)	1979-2007	Mean Seasonal Cycle 1979- 2007	Std dev anom.+ trend	Global
Ice thickness	NH and SH	NSIDC (1998) (NH) Worby et al. (2008) (SH)	1979-2000 (NH) 1980-2000 (SH)	Mean abs. error	1980-1990 vs 1990-2000 (NH only)	Local
Ice drift	NH and SH	Fowler (2007) (interp. to ORCA1)	1979-2006	Mean Kinetic En.	Spatial only	Global
Fram Strait export (vol. and area)	NH	Kwok et al. (2004) ; Spreen et al. (2009)	1979-2007	Mean Seasonal Cycle 1979- 2007	Std dev	Local

Metrics =	abs(model - obs)		
	typical error		

 NH

 LIM2 : 1.25

 LIM3 : 0.50

 SH

 LIM2 : 3.48

 LIM3 : 1.16

 (the lower, the better)

Metrics

Model-obs difference in sea ice draft/thickness [m]

<u>Metrics</u> <u>NH</u> LIM2 : 0.92 LIM3 : 0.69

<u>SH</u> LIM2 : 3.23 LIM3 : 2.46

(the lower, the better)

Mean drift (example : summer 1999)

Metrics

	LIM2	LIM3
Area	0.47	0.76
Volume	1.14	0.82

(the lower, the better)

4. Discussion

Typical error 4.1 Northern Hemisphere 1.5 NH conc. mean 0.96 0.15 [] 0.78 NH conc. std 1.02 0.05 [] 0.76 1.4 NH conc. trend 0.05 [] 1.09 0.78 Ice Thickness Distribution 1.3 Atmosphere NH ext. mean 1.25 0.5 0.8 [e6km2] 1.2 NH ext. std 1.44 0.1 [e6km2] 0.96 NH ext. trend 0.79 0.5 [e6km2] 1.28 ice and snow transport 1.1 Snow Melting/accumulation at surface Leads Sea ice NH thick 0.92 0.69 1 [m] NH thick trend 0.88 0.1 [] 0.66 0.9 NH drift KE 0.39 0.63 0.0004 [J/kg] 0.8 NH drift corr. 0.5 [] 0.88 0.78 Ice thickness categories 0.7 Ocean Fram are mean 0.47 0.76 20 [e3km2] http://stratus.astr.ucl.ac.be/textbook/chapter3 node12.xml Fram are std. 0.36 0.84 10 [e3km2] 0.6 Fram vol mean 1.14 0.82 50 [km3] Fram vol std. 0.09 8.0 20 [km3] 0.5 Grid formulation

LIM2 LIM3

Metrics

4. Discussion

4.2 Southern Hemisphere

- Thinner ice
- Quality of atmospheric forcing (Timmerman et al., 2004)
- Role of the ocean

5. Conclusion

- Metrics help quantify qualitative findings
- Model performance more sensitive in NH
- In NH : LIM3 better for ice concentration and thickness (ITD)
- In SH : LIM2 and LIM3 worse than NH, no clear improvement

What can we expect from EC-Earth-LIM3?

- Caution : EC-Earth is a GCM
- More seasonal to decadal variability than LIM2
- Reduced mean ice thickness

Current EC-Earth sea ice

EC-Earth-LIM2 Forced NEMO-LIM

K. Wyser, pers. comm.